Potential Analysis

, Volume 34, Issue 1, pp 43–56 | Cite as

Some Weighted Energy Classes of Plurisubharmonic Functions

  • Le Mau HaiEmail author
  • Pham Hoang Hiep


In this paper we study relations between the weighted energy class \(\mathcal{E}_{\chi}\) introduced by S. Benelkourchi, V. Guedj and A. Zeriahi recently with Cegrell’s classes \(\mathcal{E}\) and \(\mathcal{N}\). Next we establish a generalized comparison principle for the operator M χ . As an application, we prove a version of existence of solutions of Monge–Ampère type equations in the class \(\mathcal{E}_{\chi}(H,\Omega)\).


Class \(\mathcal{E}_{\chi}\) Class \(\mathcal{E}\) Class \(\mathcal{N}\) Strong comparison principle Operator Mχ Monge–Ampère equation 

Mathematics Subject Classifications (2010)

32U05 32W20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahag, P., Cegrell, U., Czyz, R., Hiep, P.H.: Monge-Ampre measures on pluripolar sets. J. Math. Pures Appl. 92, 613–627 (2009)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ahag, P., Czyz, R., Hiep, P.H.: Concerning the energy class \(\mathcal{E}_p\) for 0 < p < 1. Ann. Pol. Math. 91, 119–131 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bedford, E., Taylor, B.A.: The Dirichlet problem for an equation of complex Monge–Ampère type. In: Byrnes, C. (ed.) Partial Differential Equations and Geometry, pp. 39–50. Dekker (1979)Google Scholar
  4. 4.
    Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1–2),1–40 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Benelkourchi, S.: Weighted Pluricomplex energy. Potential Anal. 31(N1), 1–20 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benelkourchi, S., Guedj, V., Zeriahi, A.: Plurisubharmonic functions with weak singularities. In: Proceedings from the Kiselmanfest, Uppsala University, Västra Aros, pp.57–74 (2009)Google Scholar
  7. 7.
    Cegrell, U.: Pluricomplex energy. Acta Math. 180, 187–217 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cegrell, U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier (Grenoble) 54, 159–179 (2004)MathSciNetGoogle Scholar
  9. 9.
    Cegrell, U.: A general Dirichlet problem for the complex Monge–Ampère operator. Ann. Pol. Math. 94, 131–147 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cegrell, U., Kolodziej, S.: The equations of complex Monge–Ampère type and stability of solutions. Math. Ann. 334, 713–729 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Czyz, R.: On a Monge–Ampère type equation in the Cegrell class \(\mathcal{E}_{\chi}\). arXiv:0805.3246v1 (math.CV)
  12. 12.
    Guedj, V., Zeriahi, A.: The weighted Monge–Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442–482 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hiep, P.H.: A characterization of bounded plurisubharmonic functions. Ann. Pol. Math. 85, 233–238 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Hiep, P.H.: The comparison principle and Dirichlet problem in the class \(\mathcal{E}_p(f), p>0\). Ibid 88, 247–261 (2006)zbMATHGoogle Scholar
  15. 15.
    Hiep, P.H.: Pluripolar sets and the subextension in Cegrell’s classes. Complex Var. Elliptic Equations. 53(7), 675–684 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Khue, N.V., Hiep, P.H.: A comparision principle for the complex Monge–Ampère operator in Cegrell’s classes and applications. Trans. Am. Math. Soc. 361, 5539–5554 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Klimek, M.: Pluripotential Theory. The Clarendon Press/Oxford University Press, New York (1991)zbMATHGoogle Scholar
  18. 18.
    Kolodziej, S.: The range of the complex Monge–Ampère operator, II. Indiana Univ. Math. J. 44, 765–782 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kolodziej, S.: Weak solutions of equations of complex Monge–Ampère type. Ann. Pol. Math. 73, 59–67 (2000)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Xing, Y.: Continuity of the complex Monge–Ampère operator. Proc. Am. Math. Soc. 124, 457–467 (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Xing, Y.: A strong comparison principle for plurisubharmonic functions with finite Pluricomplex energy. Mich. Math. J. 56, 563–581 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsHanoi National University of EducationHanoiVietnam

Personalised recommendations