Potential Analysis

, Volume 34, Issue 1, pp 13–22 | Cite as

On Certain Nonlinear Elliptic PDE and Quasiconformal Maps Between Euclidean Surfaces



We mainly investigate some properties of quasiconformal mappings between smooth 2-dimensional surfaces with boundary in the Euclidean space, satisfying certain partial differential equations (inequalities) concerning Laplacian, and in particular satisfying Laplace equation and show that these mappings are Lipschitz. Conformal parametrization of such surfaces and the method developed in our paper (Kalaj and Mateljević, J Anal Math 100:117–132, 2006) have important role in this paper.


Isothermal coordinates Harmonic maps Quasiconformal mappings PDE Lipschitz continuous 

Mathematics Subject Classifications (2010)

Primary 30C65; Secondary 53C43 30C35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings. J. d’ Anal. 5, 197–272 (1956/57)CrossRefGoogle Scholar
  2. 2.
    Jost, J.: Harmonic maps between surfaces. Lecture Notes in Mathematics, 1062, x+133 pp. Springer-Verlag, Berlin (1984)MATHGoogle Scholar
  3. 3.
    Kalaj, D.: Quasiconformal harmonic functions between convex domains. Publ. Inst. Math., Nouv. Ser. 76(90), 3–20 (2004)MathSciNetGoogle Scholar
  4. 4.
    Kalaj, D.: Quasiconformal harmonic mapping between Jordan domains. Math. Z. 260(2), 237–252 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kalaj, D.: On quasiconformal harmonic maps between surfaces. arXiv:0905.0699
  6. 6.
    Kalaj, D.: Harmonic quasiconformal mappings and Lipschitz spaces. Ann. Acad. Sci. Fenn., Math. 34, 475–485 (2009)MATHMathSciNetGoogle Scholar
  7. 7.
    Kalaj, D., Mateljević, M.: Inner estimate and quasiconformal harmonic maps between smooth domains. J. Anal. Math. 100, 117–132 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kalaj, D., Pavlović, M.: On quasiconformal self-mappings of the unit disk satisfying the Poisson equation. Transactions of AMS (2010, to appear)Google Scholar
  9. 9.
    Kalaj, D., Pavlović, M.: Boundary correspondence under harmonic quasiconformal homeomorfisms of a half-plane. Ann. Acad. Sci. Fenn., Math. 30(1), 159–165 (2005)MATHMathSciNetGoogle Scholar
  10. 10.
    Kellogg, O.: On the derivatives of harmonic functions on the boundary. Trans. Am. Math. Soc. 33, 689–692 (1931)MathSciNetGoogle Scholar
  11. 11.
    Knežević, M., Mateljević, M.: On the quasi-isometries of harmonic quasiconformal mappings. J. Math. Anal. Appl. 334(1), 404–413 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Manojlović, V.: Bi-lipshicity of quasiconformal harmonic mappings in the plane. Filomat 23(1), 85–89 (2009)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn., A I 425, 3–10 (1968)MathSciNetGoogle Scholar
  14. 14.
    Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. arXiv:0709.4546 (to appear)
  15. 15.
    Partyka, D., Sakan, K.: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings. Ann. Acad. Sci. Fenn. Math. 32(2), 579–594 (2007)MATHMathSciNetGoogle Scholar
  16. 16.
    Pavlović, M.: Boundary correspondence under harmonic quasiconformal homeomorfisms of the unit disc. Ann. Acad. Sci. Fenn. 27, 365–372 (2002)MATHGoogle Scholar
  17. 17.
    Pommerenke, C.: Boundary Behavour of Conformal Maps. Springer-Verlag, New York (1991)Google Scholar
  18. 18.
    Warschawski, S.E.: On differentiability at the boundary in conformal mapping. Proc. Amer. Math. Soc 12, 614–620 (1961)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Warschawski, S.E.: On the higher derivatives at the boundary in conformal mapping. Trans. Am. Math. Soc 38(2), 310–340 (1935)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MontenegroPodgoricaMontenegro
  2. 2.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations