Advertisement

Potential Analysis

, 30:371 | Cite as

Fractional Integrals on Product Manifolds

  • Yong DingEmail author
  • Xinfeng Wu
Article
  • 65 Downloads

Abstract

In this paper, the authors give a mixed norm estimate for the multi-parameter fractional integrals on product measurable spaces. This estimate is applied to obtain the boundedness for the fractional integrals of Nagel-Stein type on product manifolds, the fractional integral of Folland-Stein type with rough convolution kernels on product homogeneous groups, and the discrete fractional integrals of Stein-Wainger type.

Keywords

Multi-parameter fractional integral Mixed norm spaces Product manifolds Homogeneous group Discrete fractional integrals 

Mathematics Subject Classifications (2000)

42B20 42B25 

References

  1. 1.
    Benedek, A., Panzone, R.: The spaces L p with mixed norms. Duke Math. J. 28, 301–324 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Chang, D-C., Nagel, A., Stein, E.M.: Estimates for the \({\bar\partial}\)-Neumann problem in pseudoconvex domains of finite type in ℂ2. Acta Math. 169, 153–228 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Ding, Y.: Weak type bounds for a class of rough operators with power weights. Proc. Am. Math. Soc. 125, 2939–2942 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50, 29–39 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Folland, G., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)Google Scholar
  7. 7.
    Han, Y., Lu, G.: Discrete Littlewood-Paley-Stein theory and multi-parameter Hardy spaces associated with flag singular integrals. arXiv:0801.1701
  8. 8.
    Koenig, K.: On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian. Am. J. Math. 124, 129–197 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Lacey, M., Petermichl, S., Pipher, J., Wick, B.: Multiparameter Riesz commutators. Am. J. Math. arXiv:0704.3720 (2009) (to appear in)
  10. 10.
    Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Bi-parameter paraproducts. Acta Math. 93, 269–296 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Multi-parameter paraproducts. Rev. Mat. Iberoam. 22, 963–976 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 259–258 (1971)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Nagel, A., Stein, E.M.: On the product theory of singular integrals. Rev. Mat. Iberoam. 20, 531–561 (2004)MathSciNetGoogle Scholar
  14. 14.
    Nagel, A., Stein, E.M.: The \(\overline{\partial\sb b}\)-complex on decoupled boundaries in ℂn. Ann. Math. 164, 649–713 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  16. 16.
    Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis II: fractional integration. J. Anal. Math. 80, 335–355 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Tao, T.: The weak-type (1,1) of L logL homogeneous convolution operators. Indiana Univ. Math. J. 48, 1547–1584 (1999)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems (BNU), Ministry of EducationBeijing Normal UniversityBeijingThe People’s Republic of China
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingThe People’s Republic of China

Personalised recommendations