Advertisement

Potential Analysis

, 29:409 | Cite as

Pluripolar Hulls and Complete Pluripolar Sets

  • Nguyen Quang DieuEmail author
  • Pham Hoang Hiep
Article
  • 82 Downloads

Abstract

We study the pluripolar hull of a complex subvariety in the complement of a closed complete pluripolar set. A result on propagation of pluripolar hulls is also given.

Keywords

Pluripolar set Complete pluripolar set Pluripolar hull 

Mathematics Subject Classifications (2000)

32U30 30C85 31C10 32D15 

References

  1. 1.
    Bedford, E., Taylor, A.: A new capacity of plurisubharmonic functions. Acta Math. 149, 1–40 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bedford, E., Taylor, A.: Plurisubharmonic functions with logarithmic singularities. Ann. Inst. Fourier 38, 133–171 (1988)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier 54(1), 159–179 (2004)MathSciNetGoogle Scholar
  4. 4.
    Coltoiu, M.: Complete locally pluripolar sets. J. Reine Angew. Math. 412, 108–112 (1990)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Duval, J., Sibony, N.: Polynomial convexity, rational convexity and currents. Duke Math. J. 79(2), 487–513 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Edlund, T.: Complete pluripolar curves and graphs. Ann. Polon. Math. 84(1), 75–86 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    El Mir, H.: Sur le prolongement des courants positifs fermés. Acta Math. 153(1–2), 1–45 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Edigarian, A., Wiegerinck, J.: The pluripolar hull of the graph of a holomorphic function with polar singularities. Indiana Math. J. 52(6), 1663–1680 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Edigarian, A., Wiegerinck, J.: Determination of the pluripolar hulls of graphs of certain holomorphic functions. Ann. Inst. Fourier (Grenoble) 54(6), 2085–2104 (2004)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Klimek, M.: Pluripotential Theory. Oxford Science, Oxford (1991)zbMATHGoogle Scholar
  11. 11.
    Mau Hai, L., Dieu N.Q., Van Long, T.: Remarks on pluripolar hulls. Ann. Polon. Math. 86, 225–236 (2004)Google Scholar
  12. 12.
    Levenberg, N., Poletsky, E.: Pluripolar hulls. Michigan Math. J. 46, 151–162 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  14. 14.
    Sibony, N.: Quelques problems de prolongement de courants en analyse complexe. Duke Math. J. 52(1), 157–197 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wiegerinck, J.: The pluripolar hull of {w = e  − 1/z}. Ark. Mat. 38, 201–208 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wiegerinck, J.: Graphs of holomorphic functions with isolated singularities are complete pluripolar. Mich. Math. J. 47, 191–197 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zeriahi, A.: Ensembles pluripolaires exceptionels pour la croissance partielle des fonctions holomorphes. Ann. Polon. Math. 50, 81–89 (1989)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsHanoi University of Education (Dai Hoc Su Pham Hanoi)HanoiVietnam

Personalised recommendations