Advertisement

Positivity

pp 1–43 | Cite as

Spectrum of weighted composition operators part V spectrum and essential spectra of weighted rotation-like operators

  • Arkady KitoverEmail author
  • Mehmet Orhon
Article
  • 8 Downloads

Abstract

We introduce the class of weighted “rotation-like” operators and study the general properties of the essential spectra of such operators. We then use this approach to investigate, and in some cases completely describe, the essential spectra of weighted rotation operators in Banach spaces of measurable and analytic functions.

Keywords

Weighted rotation-like operators Spectrum Fredholm spectrum Essential spectra 

Mathematics Subject Classification

Primary 47B33 Secondary 47B48 46B60 

Notes

References

  1. 1.
    Abramovich, Y.A., Arenson, E.L., Kitover, A.K.: Banach \(C(K)\)-Modules and Operators Preserving Disjointness. Pitman Research Notes in Mathematical Series, vol. 277. Longman Scientific and Technical, Harlow (1992)zbMATHGoogle Scholar
  2. 2.
    Ahlfors, L.V.: Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable. International Series in pure and applied Mathematics, 3rd edn. McGraw–Hill, Düsseldorf (1979)zbMATHGoogle Scholar
  3. 3.
    Alexander, H., Wermer, J.: Several Complex Variables and Banach Algebras, 3rd edn. Springer, Berlin (1998)zbMATHGoogle Scholar
  4. 4.
    Allen, R.F., Colonna, F.: Isometries and spectra of multiplication operators on the Bloch space. Bull. Aust. Math. Soc. 79, 147–160 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Axler, S., Bourdon, P.: Finite codimensional invariant subspaces of Bergman spaces. Trans. AMS 306(2), 805–817 (1988)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bennet, C., Sharpley, R.: Interpolation of Operators. Academic Press Inc., Cambridge (1988)Google Scholar
  7. 7.
    Bourbaki, N.: General Topology, Part 2. Addison-Wesley, Boston (1966)zbMATHGoogle Scholar
  8. 8.
    Bourbaki, N.: Integration I. Springer, Berlin (2004)CrossRefGoogle Scholar
  9. 9.
    Brown, L., Shields, A.L.: Multipliers and cyclic vectors in Bloch space. Mich. Math. J. 38, 141–146 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Caradus, S.R., Pfaffenberger, W.E., Yood, B.: Calkin Algebras and Algebras of Operators on Banach Spaces. Marcel Dekker, New York (1974)zbMATHGoogle Scholar
  11. 11.
    Dunford, N., Schwarz, J.T.: Linear Operators, Part 1, General Theory. Wiley, New York (1988)Google Scholar
  12. 12.
    Duren, P.: Theory of \(H^p\)-spaces. Academic Press, Cambridge (1970)zbMATHGoogle Scholar
  13. 13.
    Duren, P., Schuster, A.: Bergman Spaces. AMS, Providence (2004)CrossRefGoogle Scholar
  14. 14.
    Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987)zbMATHGoogle Scholar
  15. 15.
    El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T.: A Primer on the Dirichlet Space. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  16. 16.
    Gamelin, T.: Uniform Algebras. Prentice-Hall, Upper Saddle River (1969)zbMATHGoogle Scholar
  17. 17.
    Hoffman, K.: Banach Spaces of Analytic Functions. Prentice-Hall, Upper Saddle River (1962)zbMATHGoogle Scholar
  18. 18.
    Kahane, J.P.: Séries de Fourier Absolument Convergentes. Springer, Berlin (1970)CrossRefGoogle Scholar
  19. 19.
    Kaniuth, E.: A Course in Commutative Banach Algebras. Springer, Berlin (2009)CrossRefGoogle Scholar
  20. 20.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)zbMATHGoogle Scholar
  21. 21.
    Kas’yanyuk, S.A.: On functions of class \(A\) and \(H_\delta \) in an annulus. Mat. Sb. N. S. 42(84), 301–326 (1957). (in Russian)MathSciNetGoogle Scholar
  22. 22.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)CrossRefGoogle Scholar
  23. 23.
    Kitover, A.K.: Spectrum of weighted composition operators: part 1. Weighted composition operators on \(C(K)\) and uniform algebras. Positivity 15(4), 639–659 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kitover, A.K.: Spectrum of weighted composition operators. Part II: weighted composition operators on subspaces of Banach lattices. Positivity 17(3), 655–676 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kitover, A.K.: Spectrum of weighted composition operators part III: essential spectra of some disjointness preserving operators on Banach lattices. In: de Jeu, M., de Pagter, B., van Gaans, O., Veraar, M. (eds.) Ordered Structures and Applications: Positivity VII, Trends in Mathematics, pp. 233–261. Springer, Cham (2016)CrossRefGoogle Scholar
  26. 26.
    Kitover, A.K.: Spectrum of weighted composition operators, part IV, spectrum and essential spectra of weighted composition operators in spaces of smooth functions on [0, 1]. Positivity 21(3), 989–1014 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kitover, A.K.: Weighted composition operators in spaces of analytic functions. (Russian) Investigations on linear operators and the theory of functions, XIV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 141, 154–161 (1985). English translation: Journal of Soviet Mathematics 37(5):1353–1357Google Scholar
  28. 28.
    Rudin, W.: Function Theory in Polydiscs. W. A. Benjamin, Inc., New York (1969)zbMATHGoogle Scholar
  29. 29.
    Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\). Springer, Berlin (1980)CrossRefGoogle Scholar
  30. 30.
    Rudin, W.: New Constructions of Functions Holomorphic in the Unit Ball of \(\mathbb{C}^n\). AMS, Providence (1985)Google Scholar
  31. 31.
    Sarason, D.: The \(H^p\) Spaces of an Annulus. Memoirs of the AMS, vol. 56. AMS, Providence (1965)zbMATHGoogle Scholar
  32. 32.
    Schmoeger, C.: On generalized punctured neighborhood theorem in \(L(X)\). Proc. Am. Math. Soc. 123(4), 1237–1240 (1995)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Stegenga, D.A.: Multipliers of the Dirichlet space. Ill. J. Math. 24(1), 113–139 (1980)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ẑivković, S.: Semi-Fredholm operators and perturbations. Publications De l’institut mathématique, Nouvelle série 61(75), 73–89 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Community College of PhiladelphiaPhiladelphiaUSA
  2. 2.University of New HampshireDurhamUSA

Personalised recommendations