, Volume 24, Issue 1, pp 197–206 | Cite as

Some results on unbounded absolute weak Dunford–Pettis operators

  • Hui LiEmail author
  • Zili Chen


We characterize Banach lattices for which each Dunford–Pettis operator (or weak Dunford–Pettis) is unbounded absolute weak Dunford–Pettis and conversely.


Unbounded absolute weak convergence Unbounded absolute weak Dunford–Pettis operator Compact operator Dunford–Pettis operator Weak Dunford–Pettis operator 

Mathematics Subject Classification

46A40 46B42 



  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Berlin (2006)CrossRefGoogle Scholar
  2. 2.
    Aqzzouz, B., Bouras, K.: Weak and almost Dunford–Pettis operators on Banach lattices. Demonstr. Math. 1, 166–179 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bahramnezhad, A., Azar, K.H.: Unbounded order continuous operators on Riesz spaces. Positivity 22(3), 837–843 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, Z.L., Wickstead, A.W.: Relative weak compactness of solid hulls in Banach lattices. Indag. Math. N. S. 9(2), 187–196 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deng, Y., O’Brien, M., Troitsky, V.G.: Unbounded norm convergence in Banach lattices. Positivity 21(3), 963–974 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Erkursun-Ozcan, N., Gezer, N.A., Zabeti, O.: Unbounded absolute weak Dunford–Pettis and unbounded absolute weak compact operators. Preprint arXiv:1708.0397v1 [math.FA]
  7. 7.
    El Fahri, K., El Kaddouri, A., Moussa, M.: the relationship between weak Dunford–Pettis operators and semi-compact operators. Afr. Mat. 28(5–6), 991–997 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gao, N.: Unbounded order convergence in dual spaces. J. Math. Anal. Appl. 419(1), 931–947 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gao, N., Troitsky, V.G., Xanthos, F.: Uo-convergence and its applications to Cesàro means in Banach lattices. Isr. J. Math. 220, 649–689 (2017)CrossRefGoogle Scholar
  10. 10.
    Gao, N., Xanthos, F.: Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl. 415(2), 931–947 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kandić, M., Marabeh, M.A.A., Troitsky, V.G.: Unbounded norm topology in Banach lattices. J. Math. Anal. Appl. 451(1), 259–279 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, H., Chen, Z.L.: Some loose ends on unbounded order convergence. Positivity 22, 83–90 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Meyer-Nieberg, P.: Banach Lattices. Universitext, Springer, Berlin (1991)CrossRefGoogle Scholar
  14. 14.
    Nakano, H.: Ergodic theorems in semi-ordered linear spaces. Ann. Math. 49(2), 538–556 (1948)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Troitsky, V.G.: Measures of non-compactness of operators on Banach lattices. Positivity 8(2), 165–178 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wickstead, A.W.: Converses for the Dodds–Fremlin and Kalton–Saab theorems. Math. Proc. Camb. Philos. Soc. 29(3), 175–179 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wickstead, A.W.: Weak and unbounded order convergence in Banach lattices. J. Aust. Math. Soc. Ser. A 24(3), 312–319 (1977)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zaanen, A.C.: Riesz Spaces II. North Holland Publishing Companyt, Amsterdam (1983)zbMATHGoogle Scholar
  19. 19.
    Zabeti, O.: Unbounded absolute weak convergence in Banach lattice. Positivity 22(2), 501–505 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsSouthwest Jiaotong UniversityChengduChina

Personalised recommendations