pp 1–29 | Cite as

Lipschitz and Triebel–Lizorkin spaces associated with the Dunkl operators on \(\mathbb {R}^d\)

  • Samir KallelEmail author


In this paper we define Lipschitz and Triebel–Lizorkin spaces associated with the differential-difference Dunkl operators on \(\mathbb {R}^d\). We study inclusion relations among them. Next, some interpolation results and continuity results of some important operators (the Dunkl–Poisson semigroup and Dunkl–Flett potentials) on them are established. Also, we prove certain inclusion relations between Dunkl–Sobolev classes \(\mathcal{L}^p_{\alpha ,k}(\mathbb {R}^d)\) of positive fractional order \(\alpha \), Dunkl–Lipschitz spaces \(\wedge ^k_{\alpha ,p,q}(\mathbb {R}^d)\) and Dunkl–Triebel–Lizorkin spaces \(F^k_{\alpha ,p,q}(\mathbb {R}^d)\).


Dunkl operators Dunkl–Poisson transforms Dunkl–Lipschitz spaces Dunkl–Triebel–Lizorkin spaces Dunkl–Flett potentials 

Mathematics Subject Classification

26A16 42A38 42B25 



  1. 1.
    Abdelkefi, C., Anker, J.P., Sassi, F., Sifi, M.: Besov-type spaces on \({\mathbb{R}}^d\) and integrability for the Dunkl transform. Symmetry Integr. Geom. Methods Appl. 5, 019, 15 (2009)zbMATHGoogle Scholar
  2. 2.
    Abdelkefi, C., Sassi, F.: Various characterizations of Besov–Dunkl spaces. Int. J. Pure Appl. Math. 39(4), 475–488 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abdelkefi, C., Sifi, M.: Characterization of Besov spaces for the Dunkl operator on the real line. J. Inequal. Pure Appl. Math. 8(3), 11 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ben, S.N., El Garna, A., Kallel, S.: Bessel and Flett potentials associated with Dunkl operators on \({\mathbb{R}}^d\). Methods Appl. Anal. 15(4), 477–494 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bouguila, R., Lazhari, M.N., Assal, M.: Besov spaces associated with Dunkl’s operator. Integral Transforms Spec. Funct. 18(8), 545–557 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Deleaval, L.: Two results on the Dunkl maximal operator. Stud. Math. 203(1), 47–68 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Jeu, M.F.E.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dunkl, C.F.: Integral kernels with reflection group invariance. Can. J. Math. 43, 1213–1227 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Flett, T.M.: Temperatures, Bessel potentials and Lipschitz spaces. Proc. Lond. Math. Soc. 22(3), 385–451 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Johnson, R.: Temperatures, Riesz potentials, and the Lipschitz spaces of Hertz. Proc. Lond. Math. Soc. 27(3), 290–316 (1973)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kallel, S.: Characterization of function spaces for the Dunkl type operator on the real line. Potential Anal. 41(1), 143–169 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kallel, S.: Generalized Dunkl–Lipschitz spaces. J. Pseudo Differ. Oper. Appl. 7(4), 533–569 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kallel, S.: Duality of generalized Dunkl–Lipschitz spaces. Acta Math. Sci. 37 B(6), 1567–1593 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kamoun, L.: Besov-type spaces for the Dunkl operator on the real line. J. Comput. Appl. Math. 199, 56–67 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kamoun, L., Nagzaoui, S.: Lipschitz spaces associated with reflection group \({\mathbf{Z}}^d_2\). Commun. Math. Anal. 7(1), 21–36 (2009)MathSciNetGoogle Scholar
  18. 18.
    Kawazoe, T., Mejjaoli, H.: Generalized Besov spaces and their applications. Tokyo J. Math. 35(2), 297–320 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys. 192, 519–542 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stein, E.M.: Topics in harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, vol. 63. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  21. 21.
    Taibleson, M.H.: On the theory of Lipschitz spaces of distributions on Euclidean \(n\)-spaces. I. Principal properties. J. Math. Mech. 13(3), 407–479 (1964)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Thangavelu, S., Xu, Y.: Convolution operateur and maximal function for the Dunkl transform. J. Anal. Math. 97, 25–56 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)CrossRefzbMATHGoogle Scholar
  24. 24.
    Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématiques et Applications LR11ES11TunisTunisia
  2. 2.Department of Mathematics, Higher Institute of Computer Sciences and Mathematics of MonastirMonastir UniversityMonastirTunisia

Personalised recommendations