pp 1–26 | Cite as

A Perron–Frobenius type result for integer maps and applications

  • Ohad Giladi
  • Björn S. Rüffer


It is shown that for certain maps, including concave maps, on the d-dimensional lattice of positive integer points, ‘approximate’ eigenvectors can be found. Applications in epidemiology as well as distributed resource allocation are discussed as examples.


Perron–Frobenius theory Integer maps Concave maps Hilbert metric 

Mathematics Subject Classification

37J25 92D30 93D20 



This paper was written while both authors were members of the ‘priority research centre for Computer-Assisted Research Mathematics and its Applications’ (CARMA) at the University of Newcastle, Australia (UON). CARMA was founded in 2009 by Jonathan M. Borwein, who also served as its director. Jon was a prolific researcher and a devoted friend. This paper is dedicated to his memory with admiration.


  1. 1.
    Berman, A., Plemmins, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  2. 2.
    Birkhoff, G.: Extensions of Jentzsch’s theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Borwein, J.M., Giladi, O.: Convex analysis in groups and semigroups: a sampler. Math. Program. 168, 11–53 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang, K.C.: Nonlinear extensions of the Perron–Frobenius theorem and the Krein–Rutman theorem. J. Fixed Point Theory Appl. 15, 433–457 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Corless, M., Shorten, R.: Deterministic and stochastic convergence properties of AIMD algorithms with nonlinear back-off functions. Autom. J. IFAC 48, 1291–1299 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 17, 1–14 (1989)CrossRefGoogle Scholar
  7. 7.
    Corless, M., King, C., Shorten, R., Wirth, F.: AIMD Dynamics and Distributed Resource Allocation. SIAM, Philadelphia (2016)CrossRefGoogle Scholar
  8. 8.
    Gantmacher, F .R.: The Theory of Matrices, vol. 1, 2. Chelsea Publishing Co, New York (1959)zbMATHGoogle Scholar
  9. 9.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  10. 10.
    Grandhi, S.A., Vijayan, R., Goodman, D.J., Zander, J.: Centralized power control in cellular radio systems. IEEE Trans. Veh. Technol. 42, 466–468 (1993)CrossRefGoogle Scholar
  11. 11.
    Hanly, S.V.: Capacity and power control in spread spectrum macrodiversity radio networks. IEEE Trans. Commun. 44, 247–256 (1996)CrossRefGoogle Scholar
  12. 12.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)CrossRefGoogle Scholar
  13. 13.
    King, C., Shorten, R.N., Wirth, F.R., Akar, M.: Growth conditions for the global stability of high-speed communication networks with a single congested link. IEEE Trans. Autom. Control 53, 1770–1774 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kloeden, P.E., Rubinov, A.M.: Attracting sets for increasing co-radiant and topical operators. Math. Nachr. 243, 134–145 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kohlberg, E.: The Perron–Frobenius theorem without additivity. J. Math. Econ. 10, 299–303 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kohlberg, E., Pratt, J.W.: The contraction mapping approach to the Perron–Frobenius theory: why Hilbert’s metric? Math. Oper. Res. 7, 198–210 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Krause, U.: Perron’s stability theorem for nonlinear mappings. J. Math. Econ. 15, 275–282 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Krause, U.: Concave Perron–Frobenius theory and applications. Nonlinear Anal. 47, 1457–1466 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lemmens, B., Nussbaum, R.: Nonlinear Perron–Frobenius Theory. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  20. 20.
    Morishima, M.: Equilibrium, Stability, and Growth: A Multi-sectoral Analysis. Clarendon Press, Oxford (1964)zbMATHGoogle Scholar
  21. 21.
    Morishima, M., Fujimoto, T.: The Frobenius theorem, its Solow–Samuelson extension and the Kuhn–Tucker theorem. J. Math. Econ. 1, 199–205 (1974)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nettleton, R. W., Alavi, H.: Power control for a spread spectrum cellular mobile radio system. In: Vehicular Technology Conference. 33rd IEEE, pp. 242–246 (1983)Google Scholar
  23. 23.
    Nikaidô, H.: Convex Structures and Economic Theory. Academic Press, New York (1968)zbMATHGoogle Scholar
  24. 24.
    Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36, 26–46 (2016)MathSciNetGoogle Scholar
  25. 25.
    Nussbaum, R .D.: Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 75, iv+137 (1988)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Peters, H.J.M., Wakker, P.P.: Convex functions on nonconvex domains. Econ. Lett. 22, 251–255 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rothblum, U.G., Shorten, R.: Nonlinear AIMD congestion control and contraction mappings. SIAM J. Control Optim. 46, 1882–1896 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Samelson, H.: On the Perron–Frobenius theorem. Mich. Math. J. 4, 57–59 (1957)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Solow, R.M., Samuelson, P.A.: Balanced growth under constant returns to scale. Econometrica 21, 412–424 (1953)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yates, R.D.: A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13, 1341–1347 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesUniversity of NewcastleCallaghanAustralia

Personalised recommendations