Advertisement

Positivity

, Volume 23, Issue 1, pp 219–231 | Cite as

Tauberian theorems for iterations of weighted mean summable integrals

  • Fırat Özsaraç
  • İbrahim ÇanakEmail author
Article
  • 75 Downloads

Abstract

Let p be a positive weight function on \(A:=[1, \infty )\) which is integrable in Lebesgue’s sense over every finite interval (1, x) for \(1<x<\infty \), in symbol: \(p \in L^{1}_{loc} (A)\) such that \(P(x)=\int _{1}^{x} p(t) dt\ne 0\) for each \(x>1\), \(P(1)=0\) and \(P(x) \rightarrow \infty \) as \(x \rightarrow \infty \). For a real-valued function \(f \in L^{1}_{loc} (A)\), we set \(s(x):=\int _{1}^{x}f(t)dt\) and denote
$$\begin{aligned} \sigma ^{(0)}_p(x):=s(x), \sigma ^{(k)}_p(x):=\frac{1}{P(x)}\int _1^x \sigma ^{(k-1)}_p(t) p(t)dt\,\,\, (x>1, k=1,2,\ldots ), \end{aligned}$$
provided that \(P(x)>0\). If
$$\begin{aligned} \lim _{x\rightarrow \infty }\sigma ^{(k)}_p(x)=L, \end{aligned}$$
we say that \(\int _{1}^{\infty }f(x)dx\) is summable to L by the k-th iteration of weighted mean method determined by the function p(x), or for short, \(({\overline{N}},p,k)\) integrable to a finite number L and we write \(s(x)\rightarrow L({\overline{N}},p,k)\). It is well-known that the existence of the limit \(\lim _{x \rightarrow \infty } s(x)=L\) implies that of \(\lim _{x \rightarrow \infty } \sigma ^{(k)}_p(x)=L\). But the converse of this implication is not true in general. In this paper, we obtain some Tauberian theorems for the weighted mean method of integrals in order that the converse implication holds true. Our results extend and generalize some classical type Tauberian theorems given for Cesàro and logarithmic summability methods of integrals.

Keywords

Tauberian theorems and conditions Weighted mean method of integrals Slowly decreasing functions Slowly oscillating functions 

Mathematics Subject Classification

40E05 40A10 40G05 

References

  1. 1.
    Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar
  2. 2.
    Çanak, İ., Totur, Ü.: Some Tauberian theorems for the weighted mean methods of summability. Comput. Math. Appl. 62(6), 2609–2615 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Çanak, İ., Totur, Ü.: Tauberian conditions for Cesàro summability of integrals. Appl. Math. Lett. 24(6), 891–896 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Çanak, İ., Totur, Ü.: Alternative proofs of some classical type Tauberian theorems for Cesàro summability of integrals. Math. Comput. Model. 55(3), 1558–1561 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Çanak, İ., Totur, Ü.: Extended Tauberian theorem for the weighted mean method of summability. Ukr. Math. J. 65(7), 1032–1041 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, C., Hsu, J.: Tauberian theorems for weighted means of double sequences. Anal. Math. 26, 243–262 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dik, M.: Tauberian theorems for sequences with moderately oscillatory control modulo. Math. Morav. 5, 57–94 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fekete, Á., Móricz, F.: Necessary and sufficient Tauberian conditions in the case of weighted mean summable integrals over \(R_{+}\). II. Publ. Math. Debr. 67(1–2), 65–78 (2005)zbMATHGoogle Scholar
  9. 9.
    Hardy, G.H.: Theorems relating to the summability and convergence of slowly oscillating series. Proc. Lond. Math. Soc. 8(2), 310–320 (1910)MathSciNetGoogle Scholar
  10. 10.
    Hardy, G.H.: Divergent Serie. Clarendon Press, Oxford (1949)Google Scholar
  11. 11.
    Karamata, J.: Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. Fr. 61, 55–62 (1933)CrossRefzbMATHGoogle Scholar
  12. 12.
    Móricz, F., Rhoades, B.E.: Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability. Acta Math. Hung. 66(1–2), 105–111 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Móricz, F.: Ordinary convergence follows from statistical summability \((C,1)\) in the case of slowly decreasing or oscillating sequences. Colloq. Math. 99(2), 207–219 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Okur, M.A., Totur, Ü.: Tauberian theorems for the logarithmic summability methods of integrals. Positivity (2018).  https://doi.org/10.1007/s11117-018-0592-3 zbMATHGoogle Scholar
  15. 15.
    Schmidt, R.: Über divergente Folgen und lineare Mittelbildungen. Math. Z. 22, 89–152 (1925)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tietz, H.: Schmidtsche Umkehrbedingungen für Potenzreihenverfahren. Acta Sci. Math. 54(3–4), 355–365 (1990)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Totur, Ü., Çanak, İ.: Tauberian conditions for the \((C,\alpha )\) integrability of functions. Positivity 21(1), 73–83 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Totur, Ü., Okur, M.A.: Alternative proofs of some classical Tauberian theorems for the weighted mean method of integrals. FILOMAT 29(10), 2281–2287 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsKırıkkale UniversityKırıkkaleTurkey
  2. 2.Department of MathematicsEge UniversityİzmirTurkey

Personalised recommendations