, Volume 23, Issue 1, pp 177–193 | Cite as

Multiplier and averaging operators in the Banach spaces \(\mathbf{ces(p), \, 1< p < \infty }\)

  • Angela A. Albanese
  • José BonetEmail author
  • Werner J. Ricker


The Banach sequence spaces ces(p) are generated in a specified way via the classical spaces \( \ell _p, 1< p < \infty .\) For each pair \( 1< p,q < \infty \) the (pq)-multiplier operators from ces(p) into ces(q) are known. We determine precisely which of these multipliers is a compact operator. Moreover, for the case of \( p = q \) a complete description is presented of those (pp)-multiplier operators which are mean (resp. uniform mean) ergodic. A study is also made of the linear operator C which maps a numerical sequence to the sequence of its averages. All pairs \( 1< p,q < \infty \) are identified for which C maps ces(p) into ces(q) and, amongst this collection, those which are compact. For \( p = q ,\) the mean ergodic properties of C are also treated.


Banach sequence spaces ces(pMultiplier Compact operator Cesàro operator Mean ergodic operator 

Mathematics Subject Classification

Primary 46B45 47B37 Secondary 46B42 46G10 47A16 47B10 



The research of the first two authors was partially supported by the Project MTM2016-76647-P (Spain). The second author thanks the Mathematics Department of the Katholische Universität Eichstätt-Ingolstadt (Germany) for its support and hospitality during his research visit in the period September 2016–July 2017.


  1. 1.
    Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces \(\ell ^{p+}\) and \( L^{p-}\). Glasg. Math. J. 59, 273–287 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), viii + 130 pp (1996)Google Scholar
  4. 4.
    Bourdon, P.S., Feldmann, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Stud. Math. 165, 135–157 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Curbera, G.P., Ricker, W.J.: A feature of averaging. Integral Equ. Oper. Theory 76, 447–449 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on \(\ell ^p\) and \(c_0\). Integral Equ. Oper. Theory 80, 61–77 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Curbera, G.P., Ricker, W.J.: The Cesàro operator and unconditional Taylor series in Hardy spaces. Integral Equ. Oper. Theory 83, 179–195 (2015)CrossRefzbMATHGoogle Scholar
  8. 8.
    Delgado, O.: \(L^1\)-spaces of vector measures defined on \(\delta \)-rings. Arch. Math. 84, 432–443 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Delgado, O.: Optimal domains for kernel operators on \([0,\infty ) \times [0,\infty ),\). Stud. Math. 174, 131–145 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory, 2nd Printing. Wiley, New York (1964)Google Scholar
  11. 11.
    Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)Google Scholar
  12. 12.
    Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)zbMATHGoogle Scholar
  14. 14.
    Knopp, K.: Infinite Sequences and Series, Translated edn. Dover Publications, New York (1956)Google Scholar
  15. 15.
    Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)CrossRefzbMATHGoogle Scholar
  16. 16.
    Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin (1996)zbMATHGoogle Scholar
  19. 19.
    Lorch, E.R.: Means of iterated transformations in reflexive vector spaces. Bull. Am. Math. Soc. 45, 945–947 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985)CrossRefzbMATHGoogle Scholar
  21. 21.
    Saejung, S.: Another look at Cesàro sequence spaces. J. Math. Anal. Appl. 366, 530–537 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Fisica “E. De Giorgi”Università del SalentoLecceItaly
  2. 2.Instituto Universitario de Matemática Pura y Aplicada IUMPAUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Math.-Geogr. FakultätKatholische Universität Eichstätt-IngolstadtEichstättGermany

Personalised recommendations