, Volume 23, Issue 1, pp 89–95 | Cite as

The completeness characterization of \(C(\mathcal {L})\), \(\mathcal {L}\) a locale

  • R. N. Ball
  • A. W. HagerEmail author


The result of the title is: an archimedean \(\ell \)-group with weak unit A is (isomorphic to) \(C(\mathcal {L})\) for some (identifiable) locale \(\mathcal {L}\) (or, \(\mathbb {R}\mathcal {L}^{\mathrm {op}}\), \(\mathcal {L}^{\mathrm {op}}\) the opposite frame) iff A is divisible and “\(*\)-complete,” (a type of sequential completeness). This is from Ball and Hager (Positivity 10:165–199, 2006), and is revisited here, with streamlined proof.


Archimedean lattice-ordered group Sequentially complete Yosida space Countable composition Locale Frame 

Mathematics Subject Classification

06D22 06F20 18A40 46A40 46E05 54A20 54B35 54C30 



We thank B. Banaschewski for numerous conversations, which spawned the present effort, and also [9]. We thank the referee for a careful reading and helpful suggestions.


  1. 1.
    Aron, E.R.: Embedding lattice-ordered algebras in uniformly closed algebras. Thesis, University of Rochester (1971)Google Scholar
  2. 2.
    Aron, E.R., Hager, A.W.: Convex vector lattices and \(l\)-algebras. Topol. Appl. 12, 1–10 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ball, R.N., Hager, A.W.: On the localic Yosida representation of an archimedean lattice-ordered group with weak unit. J. Pure Appl. Algebra 70, 17–43 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ball, R.N., Hager, A.W.: Algebraic extensions of an archimedean lattice-ordered group. II. J. Pure Appl. Algebra 138, 197–204 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ball, R.N., Hager, A.W.: A new characterization of the continuous functions on a locale. Positivity 10, 165–199 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ball, R.N., Hager, A.W.: The inversion characterization(s) of \(C(\cal{L})\), \(\cal{L}\) a locale (in preparation) Google Scholar
  7. 7.
    Ball, R.N., Walters-Wayland, J.: \(C\)- and \(C^{\ast }\)-quotients in pointfree topology. Diss. Math. 412, 62 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Banaschewski, B.: The Real Numbers in Pointfree Topology. Textos de. Mat. Serie B, no. 12, Univ. de Coimbra (1997)Google Scholar
  9. 9.
    Banaschewski, B., Hager, A.W.: Representation of \(H\)-closed monoreflections in archimedean \(\ell \)-groups with weak unit. Categ. Gen. Alg. Struct. Appl (in press)Google Scholar
  10. 10.
    Dashiell, F.: A theorem on \(C^{\ast }\)-embedding. Proc. Am. Math. Soc. 69, 359–360 (1978)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hager, A.W.: The relatively uniform completion, epimorphisms and units, in divisible archimedean \(\ell \)-groups. Math. Slov. 65, 343–358 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hager, A.W., Madden, J.J.: The \(H\)-closed monoreflections, implicit operations, and countable composition in archimedean \(\ell \)-groups with weak unit. Appl. Categ. Struct. 24(5), 605–617 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hager, A.W., Robertson, L.C.: Representing and ringifying a Riesz space. In: Sympos. Math. vol. 21, pp. 411–431. Academic Press, London (1977)Google Scholar
  14. 14.
    Henriksen, M., Isbell, J.R., Johnson, D.G.: Residue class fields of lattice-ordered algebras. Fund. Math. 50, 107117 (1961)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Henriksen, M., Johnson, D.G.: On the structure of a class of lattice-ordered algebras. Fund. Math. 50, 73–94 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Isbell, J.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Madden, J.J.: Frames associated with an abelian \(l\)-group. Trans. Am. Math. Soc. 331, 265–279 (1992)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Madden, J.J., Vermeer, J.: Epicomplete archimedean \(l\)-groups via a localic Yosida theorem. J. Pure Appl. Algebra 68, 243–252 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DenverDenverUSA
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations