Advertisement

Positivity

, Volume 22, Issue 5, pp 1371–1385 | Cite as

Higher-order generalized Studniarski epiderivative and its applications in set-valued optimization

  • Nguyen Le Hoang Anh
Article
  • 73 Downloads

Abstract

In the paper, we introduce the higher-order generalized Studniarski epiderivative of set-valued maps. Via this concept, some results on optimality conditions and duality for set-valued optimization problems are established.

Keywords

The higher-order generalized Studniarski epiderivative Weak efficient solution Strict efficient solution Optimality condition Duality 

Mathematics Subject Classification

49J52 54C60 90C46 90C56 

Notes

Acknowledgements

The author is grateful to an anonymous referee for his/her valuable comments which helps to improve the manuscript.

References

  1. 1.
    Anh, N.L.H.: Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality. Positivity 18, 449–473 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anh, N.L.H.: Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization. Positivity 20, 499–514 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anh, N.L.H.: Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives. Numer. Func. Anal. Optim. 37, 823–838 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)zbMATHGoogle Scholar
  5. 5.
    Bector, C.R., Bector, M.K.: On various duality theorems in nonlinear programming. J. Optim. Theory Appl. 63, 509–515 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bednarczuk, E.M., Song, W.: Contingent epiderivative and its applications to set-valued optimization. Control Cybern. 27, 376–386 (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Borwein, J.M.: On the existence of Pareto efficient points. Math. Oper. Res. 8, 64–73 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, C.R., Li, S.J., Teo, K.L.: Higher order weak epiderivatives and applications to duality and optimality conditions. Comput. Math. Appl. 57, 1389–1399 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Corley, H.W.: Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58, 1–10 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crepsi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set-valued optimization. Math. Methods Oper. Res. 63, 87–106 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Durea, M.: Optimality conditions for weak and firm efficiency in set-valued optimization. J. Math. Anal. Appl. 344, 1018–1028 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, 881–908 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Göpfert, A., Riahi, H., Tammer, C., Zǎlinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)zbMATHGoogle Scholar
  15. 15.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004)CrossRefGoogle Scholar
  16. 16.
    Jahn, J., Rauh, R.: Contingent epiderivatives and set-valued optimization. Math. Methods Oper. Res. 46, 193–211 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jahn, J., Khan, A.A.: Generalized contingent epiderivatives in set-valued optimization: optimality conditions. Numer. Func. Anal. Optim. 23, 807–832 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization: An Introduction with Applications. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  19. 19.
    Li, S.J., Chen, C.R.: Higher-order optimality conditions for Henig efficient solutions in set-valued optimization. J. Math. Anal. Appl. 323, 1184–1200 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, S.J., Teo, K.L., Yang, X.Q.: Higher-order Mond-Weir duality for set-valued optimization. J. Comput. Appl. Math. 217, 339–349 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, S.J., Yang, X.Q., Chen, G.Y.: Nonconvex vector optimization of set-valued mappings. J. Math. Anal. Appl. 283, 337–350 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)CrossRefGoogle Scholar
  23. 23.
    Luc, D.T.: Contingent derivatives of set-valued maps and applications to vector optimization. Math. Prog. 50, 99–111 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 263–279. Academic Press, New York (1981)zbMATHGoogle Scholar
  25. 25.
    Mond, B., Weir, T.: Generalised convexity and duality in multiple objecttive programming. Bull. Aust. Math. Soc. 39, 287–299 (1989)CrossRefGoogle Scholar
  26. 26.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I Basic Theory. Springer, Berlin (2006)Google Scholar
  27. 27.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. II Applications. Springer, Berlin (2006)Google Scholar
  28. 28.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)zbMATHGoogle Scholar
  29. 29.
    Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24, 1044–1049 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sun, X.K., Li, S.J.: Generalized second-order contingent epiderivatives in parametric vector optimization problems. J. Optim. Theory Appl. 58, 351–363 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Wang, Q.L., Li, S.J.: Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency. Numer. Func. Anal. Optim. 30, 849–869 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, Q.L., Li, S.J., Chen, C.R.: Higher-order generalized adjacent derivative and applications to duality for set-valued optimization. Taiwan. J. Math. 15, 1021–1036 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Weir, T.: Proper efficiency and duality for vector valued optimization problems. Bull. Aust. Math. Soc. 43, 21–34 (1987)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wolfe, P.: A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Analysis Research Group, Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations