Skip to main content
Log in

The positive solutions to a quasi-linear problem of fractional p-Laplacian type without the Ambrosetti–Rabinowitz condition

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of nontrivial solution to a quasi-linear problem

where \( (-\Delta )_{p}^{s} u(x)=2\lim \nolimits _{\epsilon \rightarrow 0}\int _{\mathbb {R}^N \backslash B_{\varepsilon }(X)} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}{| x-y | ^{N+sp}}dy, \) \( x\in \mathbb {R}^N\) is a nonlocal and nonlinear operator and \( p\in (1,\infty )\), \( s \in (0,1) \), \( \lambda \in \mathbb {R} \), \( \Omega \subset \mathbb {R}^N (N\ge 2)\) is a bounded domain which smooth boundary \(\partial \Omega \). Using the variational methods based on the critical points theory, together with truncation and comparison techniques, we show that there exists a critical value \(\lambda _{*}>0\) of the parameter, such that if \(\lambda >\lambda _{*}\), the problem \((P)_{\lambda }\) has at least two positive solutions, if \(\lambda =\lambda _{*}\), the problem \((P)_{\lambda }\) has at least one positive solution and it has no positive solution if \(\lambda \in (0,\lambda _{*})\). Finally, we show that for all \(\lambda \ge \lambda _{*}\), the problem \((P)_{\lambda }\) has a smallest positive solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appleabeaum, D.: Lévy processes-from probability to finance quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)

    Google Scholar 

  2. Caffarelli, L.: Nonlocal equations, drifts and games. In: Nonlinear Partial Differential Equations, Abel Symposia, vol. 7, pp. 37–52 (2012)

  3. Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Iannizzotto, A., Squassina, M.: 1/2-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414, 372–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Dier. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bjorland, C., Caffarelli, L.A., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230, 1859–1894 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. 49, 795–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional \(p\)-eigenvalue problems. Asymptot. Anal. 88, 233–245 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. arXiv:1412.4722

  14. Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. arXiv:1403.0280

  15. Iannizzotto, A., Mosconi, S., Squassina, M.: Global H\(\ddot{o}\)lder regularity for the fractional \(p\)-Laplacian. Preprint. arXiv:1411.2956

  16. Iannizzotto, A., Mosconi, S., Squassina, M.: A note on global regularity for the weak solutions of fractional \(p\)-Laplacian equations. arXiv:1504.01006

  17. Iannizzotto, A., Liu, S.B., Perera, K., Squassina, A.M.: Existence results for fractional \(p\)-Laplacian problems via Morse theory. Adv. Calc. Var. 9, 101–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leandeo, M.D.P., Quaas, A.: Global bifurcation for fractional \(p\)-Laplacian and application. arXiv:1412.4722

  19. Perera, K., Squassina, M., Yang, Y.: Bifurcation and multiplicity results for critical fractional \(p\)-Laplacian problems. arXiv:1407.8061

  20. Afrouzi, G.A., Brown, K.J.: On a diffusive logistic equation. J. Math. Anal. Appl. 225, 326–339 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Existence of multiple solutions with precise sign information for superlinear Neumann problems. Ann. Mat. Pura Appl. 188, 679–719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dunford, N., Schwartz, J.T.: Linear Operator. I. General Theory. Pure and Applied Mathematics, vol. 7. Viley, New York (1958)

    MATH  Google Scholar 

  24. Heikkilä, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Monographs and Textbook in Pure and Applied Mathematics, vol. 181. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ge.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 11201095, 11201098), the Youth Scholar Backbone Supporting Plan Project of Harbin Engineering University, the Fundamental Research Funds for the Central Universities, Postdoctoral research startup foundation of Heilongjiang (No. LBH-Q14044) and the Science Research Funds for Overseas Returned Chinese Scholars of Heilongjiang Province (No. LC201502).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, B., Cui, YX., Sun, LL. et al. The positive solutions to a quasi-linear problem of fractional p-Laplacian type without the Ambrosetti–Rabinowitz condition. Positivity 22, 873–895 (2018). https://doi.org/10.1007/s11117-018-0551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-018-0551-z

Keywords

Mathematics Subject Classification

Navigation