, Volume 19, Issue 4, pp 843–875 | Cite as

Nodal properties of eigenfunctions of a generalized buckling problem on balls

  • Colette De Coster
  • Serge NicaiseEmail author
  • Christophe Troestler


In this paper we are interested in the following fourth order eigenvalue problem coming from the buckling of thin films on liquid substrates:
$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta ^2 u+ \kappa ^2 u=-\lambda \Delta u &{}\text {in } B_1,\\ u=\partial _r u= 0 &{}\text {on } \partial B_1, \end{array}\right. } \end{aligned}$$
where \(B_1\) is the unit ball in \({\mathbb R}^N\). When \(\kappa > 0\) is small, we show that the first eigenvalue is simple and the first eigenfunction, which gives the shape of the film for small displacements, is positive. However, when \(\kappa \) increases, we establish that the first eigenvalue is not always simple and the first eigenfunction may change sign. More precisely, for any \(\kappa \in \mathopen ]0,+\infty \mathclose [\), we give the exact multiplicity of the first eigenvalue and the number of nodal regions of the first eigenfunction.


Fourth order problem Buckling Nodal properties of eigenfunctions 

Mathematics Subject Classification

35K55 35B65 



The authors would like to thank the anonymous referee for her/his careful reading of the manuscript.


  1. 1.
    Brown, B.M., Davies, E.B., Jimack, P.K., Mihajlović, M.D.: A numerical investigation of the solution of a class of fourth-order eigenvalue problems. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(1998), 1505–1521 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Chasman, L.M.: An isoperimetric inequality for fundamental tones of free plates. ProQuest LLC, Ann Arbor. Ph.D. Thesis, University of Illinois at Urbana-Champaign (2009)Google Scholar
  3. 3.
    Chasman, L.M.: Vibrational modes of circular free plates under tension. Appl. Anal. 90(12), 1877–1895 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Coffman, C.V.: On the structure of solutions \(\Delta ^{2}u=\lambda u\) which satisfy the clamped plate conditions on a right angle. SIAM J. Math. Anal. 13(5), 746–757 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Coffman, C.V., Duffin, R.J.: On the fundamental eigenfunctions of a clamped punctured disk. Adv. Appl. Math. 13(2), 142–151 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Coffman, C.V., Duffin, R.J., Shaffer, D.H.: The fundamental mode of vibration of a clamped annular plate is not of one sign. In: Constructive Approaches to Mathematical Models (Proc. Conf. in honor of R. J. Duffin, Pittsburgh, PA, 1978), pp. 267–277. Academic Press, New York (1979)Google Scholar
  7. 7.
    Desmons, B., Nicaise, S., Troestler, C., Venel, J.: Wrinkling of thin films laying on liquid substrates under small compression (2014, in preparation)Google Scholar
  8. 8.
    Desmons, B., Troestler, C.: Wrinkling of thin films laying on liquid substrates under small one-dimensional compression (2013, preprint)Google Scholar
  9. 9.
    Du, Y.: Order structure and topological methods in nonlinear partial differential equations, vol. 1. Maximum principles and applications, Series in Partial Differential Equations and Applications, vol. 2. World Scientific Publishing Co., Pte. Ltd., Hackensack (2006)Google Scholar
  10. 10.
    Duffin, R.J.: Nodal lines of a vibrating plate. J. Math. Phys. 31, 294–299 (1953)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gazzola, F., Grunau, H.-C., Sweers, G., Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, vol. 1991. Springer, Berlin (2010)Google Scholar
  12. 12.
    Grumiau, C., Troestler, C.: Oddness of least energy nodal solutions on radial domains. In: Proceedings of the 2007 Conference on Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, Electron. J. Differ. Equ. Conf., vol. 18, pp. 23–31. Southwest Texas State Univ., San Marcos (2010)Google Scholar
  13. 13.
    Grunau, H.-C.: Positivity, change of sign and buckling eigenvalues in a one-dimensional fourth order model problem. Adv. Differ. Equ. 7(2), 177–196 (2002)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Grunau, H.-C., Sweers, G.: Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions. Math. Nachr. 179, 89–102 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Grunau, H.-C., Sweers, G.: The maximum principle and positive principal eigenfunctions for polyharmonic equations. In: Reaction Diffusion Systems (Trieste, 1995), Lecture Notes in Pure and Appl. Math., vol. 194, pp. 163–182. Dekker, New York (1998)Google Scholar
  16. 16.
    Kawohl, B., Levine, H.A., Velte, W.: Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions. SIAM J. Math. Anal. 24(2), 327–340 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kozlov, V.A., Kondrat̀ev, V.A., Maz̀ya, V.G.: On sign variability and the absence of “strong” zeros of solutions of elliptic equations. Izv. Akad. Nauk SSSR Ser. Mat. 53(2), 328–344 (1989)Google Scholar
  18. 18.
    Laurençot, P., Walker, C.: Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry. J. Anal. Math. (2014, to appear)Google Scholar
  19. 19.
    Müller, C.: Spherical harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)Google Scholar
  20. 20.
    N. I. of Standards and Technology. Digital library of mathematical functions. (2012)
  21. 21.
    Pálmai, T.: On the interlacing of cylinder functions. Math. Inequal. Appl. 16(1), 241–247 (2013)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Peletier, M.A.: Sequential buckling: a variational analysis. SIAM J. Math. Anal. 32(5), 1142–1168 (2000)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B., Lee, K.Y.C., Cerda, E.: Stress and fold localization in thin elastic membranes. Science 320, 912–916 (2008)CrossRefGoogle Scholar
  24. 24.
    Sweers, G.: When is the first eigenfunction for the clamped plate equation of fixed sign? In: Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Vi na del Mar-Valparaiso, 2000), Electron. J. Differ. Equ. Conf., vol. 6, pp. 285–296. Southwest Texas State Univ., San Marcos (2001)Google Scholar
  25. 25.
    Walter, W.: A theorem on elliptic differential inequalities with an application to gradient bounds. Math. Z. 200(2), 293–299 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Wieners, C.: A numerical existence proof of nodal lines for the first eigenfunction of the plate equation. Arch. Math. (Basel) 66(5), 420–427 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Zasadzinski, J.A., Ding, J., Warriner, H.E., Bringezu, A.J., Waring, A.J.: The physics and physiology of lung surfactants. Curr. Opin. Colloid Interface Sci. 6(5), 506–513 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Colette De Coster
    • 1
  • Serge Nicaise
    • 1
    Email author
  • Christophe Troestler
    • 2
  1. 1.Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de ValenciennesValenciennes Cedex 9France
  2. 2.Département de MathématiqueUniversité de MonsMonsBelgium

Personalised recommendations