, Volume 19, Issue 3, pp 659–679 | Cite as

On the continuous Cesàro operator in certain function spaces

  • Angela A. AlbaneseEmail author
  • José Bonet
  • Werner J. Ricker


Various properties of the (continuous) Cesàro operator \(\mathsf {C}\), acting on Banach and Fréchet spaces of continuous functions and \(L^p\)-spaces, are investigated. For instance, the spectrum and point spectrum of \(\mathsf {C}\) are completely determined and a study of certain dynamics of \(\mathsf {C}\) is undertaken (eg. hyper- and supercyclicity, chaotic behaviour). In addition, the mean (and uniform mean) ergodic nature of \(\mathsf {C}\) acting in the various spaces is identified.


Cesàro operator Continuous function spaces \(L^p\)-spaces (Uniformly) mean ergodic operator Hypercyclic operator Supercyclic operator 

Mathematics Subject Classification

Primary 47A10 47A16 47A35 Secondary 46A04 47B34 47B38 



The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.


  1. 1.
    Albanese, A.A.: Primary products of Banach spaces. Arch. Math. 66, 397–405 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Albanese, A.A.: On subspaces of the spaces \(L^p_{\rm loc}\) and of their strong duals. Math. Nachr. 197, 5–18 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Albanese, A.A., Moscatelli, V.B.: Complemented subspaces of sums and products of copies of \(L^1 [0,1]\). Rev. Mat. Univ. Complut. Madr. 9, 275–287 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010)Google Scholar
  6. 6.
    Albanese, A.A., Bonet, J., Ricker, W.J.: \(C_0\)-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bayart, F., Matheron, E.: Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Google Scholar
  9. 9.
    Bellenot, S.F., Dubinsky, E.: Fréchet spaces with nuclear Köthe quotients. Trans. Am. Math. Soc. 273, 579–594 (1982)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Boyd, D.W.: The spectrum of the Cesàro operator. Acta Sci. Math. (Szeged) 29, 31–34 (1968)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. (Szeged) 26, 125–137 (1965)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dierolf, S., Zarnadze, D.N.: A note on strictly regular Fréchet spaces. Arch. Math. 42, 549–556 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory (2nd Printing). Wiley-Interscience, New York (1964)Google Scholar
  15. 15.
    Galaz Fontes, F., Solís, F.J.: Iterating the Cesàro operators. Proc. Am. Math. Soc. 136, 2147–2153 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Galaz Fontes, F., Ruiz-Aguilar, R.W.: Grados de ciclicidad de los operadores de Cesàro–Hardy. Misc. Mat. 57, 103–117 (2013)MathSciNetGoogle Scholar
  17. 17.
    González, M., León-Saavedra, F.: Cyclic behaviour of the Cesàro operator on \(L_2(0,+\infty )\). Proc. Am. Math. Soc. 137, 2049–2055 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos. In: Universitext. Springer, London (2011)Google Scholar
  19. 19.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. In: Reprint of the 1952 Edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988)Google Scholar
  20. 20.
    Krengel, U.: Ergodic theorems. In: De Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Google Scholar
  21. 21.
    Leibowitz, G.M.: Spectra of finite range Cesàro operators. Acta Sci. Math. (Szeged) 35, 27–28 (1973)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Leibowitz, G.M.: The Cesàro operators and their generalizations: examples in infinite-dimensional linear analysis. Am. Math. Mon. 80, 654–661 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    León-Saavedra, F., Piqueras-Lerena, A., Seoane-Sepúlveda, J.B.: Orbits of Cesàro type operators. Math. Nachr. 282, 764–773 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)CrossRefzbMATHGoogle Scholar
  25. 25.
    Meise, R., Vogt, D.: Introduction to functional analysis. In: Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press; Oxford University Press, New York (1997)Google Scholar
  26. 26.
    Metafune, G., Moscatelli, V.B.: Quojections and prequojections. In: Terzioğlu, T. (ed.) Advances in the Theory of Fréchet spaces. NATO ASI Series, vol. 287, pp. 235–254. Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  27. 27.
    Moscatelli, V.B.: Fréchet spaces without norms and without bases. Bull. Lond. Math. Soc. 12, 63–66 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Piszczek, K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Piszczek, K.: Barrelled spaces and mean ergodicity. Rev R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 104, 5–11 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Angela A. Albanese
    • 1
    Email author
  • José Bonet
    • 2
  • Werner J. Ricker
    • 3
  1. 1.Dipartimento di Matematica e Fisica “E. De Giorgi”Università del SalentoLecceItaly
  2. 2.Instituto Universitario de Matemática Pura y Aplicada IUMPAUniversitat Politécnica de ValénciaValenciaSpain
  3. 3.Math.-Geogr. FakultätKatholische Universität Eichstätt-IngolstadtEichstättGermany

Personalised recommendations