Advertisement

Positivity

, Volume 18, Issue 3, pp 531–556 | Cite as

Efficiency in vector quasi-equilibrium problems and applications

  • Nguyen Ba Minh
  • Le Anh TuanEmail author
  • Pham Huu Sach
Article

Abstract

In this paper, we give sufficient conditions for the existence of efficient solutions of a generalized vector quasi-equilibrium problem in topological vector spaces. The motivations for introducing this problem come from practical problems in traffic networks and the optimal control theory for discrete-time dynamical systems. The main results of the paper are proven with the help of a strongly monotonic function which can be constructed from the data of the problem under consideration. Some notions of cone-semicontinuity of set-valued maps, weaker than the usual concepts of semicontinuity, are also used in our study. As applications, we obtain existence results in vector quasi-optimization problems, Stampacchia set-valued vector quasi-variational inequality problems and Pareto vector quasi-saddle point problems. All these results are different from the corresponding ones in the literature.

Keywords

Vector quasi-equilibrium problem Optimal control theory  Vector quasi-optimization problem Pareto vector quasi-saddle point  Cone-semicontinuity Set-valued map 

Mathematics Subject Classification (2000)

49J53 54H25 

Notes

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology (NAFOSTED).

References

  1. 1.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press Inc., Orlando (1985)zbMATHGoogle Scholar
  2. 2.
    Goh, C.J., Yang, X.Q.: Duality in Optimization and Variational Inequalities. Taylor & Francis, London (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Reference on vector variational inequalities. J. Global Optim. 32, 529–536 (2005)Google Scholar
  4. 4.
    Fang, Y.P., Huang, N.J.: Strong vector variational inequalities in Banach spaces. Appl. Math. Lett. 19, 362–368 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gong, X.: Strong vector equilibrium problems. J. Global Optim. 36, 339–349 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fu, J.Y., Wang, S.H., Huang, Z.D.: New type of generalized vector quasiequilibrium problem. J. Optim. Theory Appl. 135, 643–652 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fu, J.Y.: Stampacchia generalized vector quasiequilibrium problems and vector saddle points. J. Optim. Theory Appl. 128, 605–619 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, S.H., Fu, J.Y.: Stampacchia generalized vector quasiequilibrium problem with set-valued mapping. J. Global Optim. 44, 99–110 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Tuan, L.A., Lee, G.M., Sach, P.H.: Upper semicontinuity in a parametric general variational problem and application. Nonlinear Anal. 72, 1500–1513 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Lin, L.J., Tan, N.X.: On quasivariational inclusion problems of type I and related problems. J. Global Optim. 39, 393–407 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Wardrop, J.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers, Part II, vol. I, pp. 325–378 (1952)Google Scholar
  12. 12.
    Yang, X.Q., Goh, C.-J.: On vector variational inequalities: applications to vector equilibria. J. Optim. Theory Appl. 95, 431–443 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Boltyanskii, V.G.: Optimal Control of Discrete-Time Processes. Nauka, Moscow (1973)Google Scholar
  14. 14.
    Huang, X.H., Yang, X.Q.: On characterizations of proper efficiency for nonconvex multiobjective optimization. J. Global Optim. 23, 213–231 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Sach, P.H.: Hartley proper efficiency in multiobjective optimization problems with locally Lipschitz set-valued objectives and constraints. J. Global Optim. 35, 1–25 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Sach, P.H., Tuan, L.A., Minh, N.B.: Approximate duality for vector quasi-equilibrium problems and applications. Nonlinear Anal. 72, 3994–4004 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Sach, P.H., Kim, D.S., Tuan, L.A., Lee, G.M.: Duality results for generalized vector variational inequalities with set-valued maps. J. Optim. Theory Appl. 136, 105–123 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Aubin, J.P.: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam (1979)zbMATHGoogle Scholar
  19. 19.
    Yannelis, N.C., Prabhakar, N.D.: Existence of maximal element and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Sach, P.H., Tuan, L.A.: Sensitivity in mixed generalized vector quasiequilibrium problems with moving cones. Nonlinear Anal. 73, 713–724 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Sach, P.H., Tuan, L.A.: Generalizations of vector quasivariational inclusion problems with set-valued maps. J. Global Optim. 43, 23–45 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ferro, F.: A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19–31 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Tian, G.: Generalized quasi-variational-like inequality problem. Math. Oper. Res. 18, 752–764 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Massey, W.S.: Singular Homology Theory. Springer, New York (1970)Google Scholar
  25. 25.
    Sach, P.H., Tuan, L.A.: Existence results for set-valued vector quasi-equilibrium problems. J. Optim. Theory Appl. 133, 229–240 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Chen, G.Y., Yang, X.Q., Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Global Optim. 32, 451–466 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, S.J., Teo, K.L., Yang, X.Q.: Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 61, 385–397 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ding, X.P., Tarafdar, E.: Generalized vector variational-like inequalities without monotonicity. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 113–124. Kluwer Academic, Dordrecht (2000)Google Scholar
  29. 29.
    Luc, D.T., Vargas, C.: Saddle points theorem for set-valued maps. Nonlinear Anal. 18, 1–7 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Tan, K.K., Yu, J., Yuan, X.Z.: Existence theorem for saddle points of vector-valued maps. J. Optim. Theory Appl. 89, 731–747 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Lin, L.J.: Existence theorems of simultaneous equilibrium problems and generalized vector quasi-saddle points. J. Global Optim. 32, 613–632 (2005)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Nguyen Ba Minh
    • 1
  • Le Anh Tuan
    • 2
    • 3
    Email author
  • Pham Huu Sach
    • 4
  1. 1.Hanoi University of CommerceHanoiVietnam
  2. 2.Nong Lam UniversityHo Chi Minh CityVietnam
  3. 3.Ninh Thuan College of PedagogyNinh ThuanVietnam
  4. 4.Hanoi Institute of Mathematics, Vietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations