, Volume 17, Issue 3, pp 875–898 | Cite as

On the peripheral point spectrum and the asymptotic behavior of irreducible semigroups of Harris operators

  • Moritz GerlachEmail author


Given a positive, irreducible and bounded \(C_0\)-semigroup on a Banach lattice with order continuous norm, we prove that the peripheral point spectrum of its generator is trivial whenever one of its operators dominates a non-trivial compact or kernel operator. For a discrete semigroup, i.e. for powers of a single operator \(T\), we show that the point spectrum of some power \(T^k\) intersects the unit circle at most in \(1\). As a consequence, we obtain a sufficient condition for strong convergence of the \(C_0\)-semigroup and for a subsequence of the powers of \(T\), respectively.


Peripheral point spectrum Irreducible Harris operator  Compact operator Asymptotic behavior 

Mathematics Subject Classification (2000)

Primary 47A11 Secondary 47B65 47G10 47D06 



The author was supported by the graduate school Mathematical Analysis of Evolution, Information and Complexity during the work on this article and he would like to thank Wolfgang Arendt for many helpful discussions and the anonymous referee for his/her constructive comments.


  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive operators. In: Pure and Applied Mathematics, vol 119. Academic Press Inc., Orlando (1985)Google Scholar
  2. 2.
    Arendt, W.: Über das Spektrum regulärer Operatoren. PhD thesis, Eberhard-Karls-Universität zu Tübingen (1979)Google Scholar
  3. 3.
    Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178(2), 271–287 (1981)Google Scholar
  4. 4.
    Arendt, W.: Positive semigroups of kernel operators. Positivity 12(1), 25–44 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306(2), 837–852 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001)Google Scholar
  7. 7.
    Axmann, D.: Struktur-und Ergodentheorie irreduzibler Operatoren auf Banachverbänden. PhD thesis, Eberhard-Karls-Universität zu Tübingen (1980)Google Scholar
  8. 8.
    Bogachev, V.I.: Measure Theory, vol. I. II. Springer, Berlin (2007)Google Scholar
  9. 9.
    Davies, E.B.: Triviality of the peripheral point spectrum. J. Evol. Equ. 5(3), 407–415 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Émilion, R.: Mean-bounded operators and mean ergodic theorems. J. Funct. Anal. 61(1), 1–14 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Engel, K., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)Google Scholar
  12. 12.
    Greiner, G.: Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen. Math. Z. 177(3), 401–423 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Greiner, G.: Spektrum und Asymptotik stark stetiger Halbgruppen positiver Operatoren. Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl. pp. 55–80 (1982)Google Scholar
  14. 14.
    Keicher, V.: On the peripheral spectrum of bounded positive semigroups on atomic Banach lattices. Arch. Math. (Basel) 87(4), 359–367 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Krengel, U.: Ergodic theorems. In: de Gruyter Studies in Mathematics, vol 6. Walter de Gruyter& Co., Berlin (1985)Google Scholar
  16. 16.
    Meyer-Nieberg, P.: Banach lattices. In: Universitext. Springer, Berlin (1991)Google Scholar
  17. 17.
    Schaefer, H.H.: Banach lattices and positive operators. In: Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer, New York (1974)Google Scholar
  18. 18.
    Varopoulos, N.T.: Sets of multiplicity in locally compact abelian groups. Ann. Inst. Fourier (Grenoble). 16(fasc. 2):123–158 (1966)Google Scholar
  19. 19.
    Wolff, M.P.H.: Triviality of the peripheral point spectrum of positive semigroups on atomic Banach lattices. Positivity 12(1), 185–192 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Institute of Applied AnalysisUniversity of UlmUlmGermany

Personalised recommendations