, Volume 17, Issue 3, pp 535–587 | Cite as

Characterization of Banach valued BMO functions and UMD Banach spaces by using Bessel convolutions

  • Jorge J. Betancor
  • Alejandro J. Castro
  • Lourdes Rodríguez-Mesa


In this paper we consider the space \({{{BMO}_o(\mathbb{R}, X)}}\) of bounded mean oscillations and odd functions on \({{\mathbb{R}}}\) taking values in a UMD Banach space X. The functions in \({{{BMO}_o(\mathbb{R}, X)}}\) are characterized by Carleson type conditions involving Bessel convolutions and γ-radonifying norms. Also we prove that the UMD Banach spaces are the unique Banach spaces for which certain γ-radonifying Carleson inequalities for Bessel–Poisson integrals of \({{{BMO}_o(\mathbb{R}, X)}}\) functions hold.


γ-Radonifying operators BMO Bessel convolution UMD Banach spaces 

Mathematics Subject Classification (2010)

46E40 42A50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amann H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Betancor J.J., Buraczewski D., Fariña J.C., Martínez T., Torrea J.L.: Riesz transforms related to Bessel operators. Proc. R. Soc. Edinburgh Sect. A 137, 701– (2007)MATHCrossRefGoogle Scholar
  3. 3.
    Betancor, J.J., Castro, A.J., Rodríguez-Mesa, L.: Characterization of uniformly convex and smooth Banach spaces by using Carleson measures in Bessel settings. (arXiv:1107.5698v1) (2011, preprint)
  4. 4.
    Betancor J.J., Chicco Ruiz A., Fariña J.C., Rodríguez-Mesa L.: Maximal operators, Riesz transforms and Littlewood-Paley functions associated with Bessel operators on BMO. J. Math. Anal. Appl 363, 310– (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Betancor J.J., Chicco Ruiz A., Fariña J.C., Rodríguez-Mesa L.: Odd \({{{\rm BMO}(\mathbb{R})})}\) functions and Carleson measures in the Bessel setting. Integr. Equ. Oper. Theory 66, 463– (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Betancor J.J., Fariña J.C., Martínez T., Torrea J.L.: Riesz transform and g-function associated with Bessel operators and their appropriate Banach spaces. Israel J. Math 157, 259– (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Betancor J.J., Marrero I.: On the topology of the space of Hankel convolution operators. J. Math. Anal. Appl. 201, 994–1001 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Blasco O.: On the dual space of \({{H^{1, \infty}_B}}\). Colloq. Math. 55, 253–259 (1988)MathSciNetMATHGoogle Scholar
  9. 9.
    Bourgain J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21, 163–168 (1983)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Burkholder D.L.: A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9, 997–1011 (1981)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Burkholder, D.L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. in Conference on harmonic analysis in honor of Antoni Zygmund, vols. I, II. (Chicago, 1981), Wadsworth Math. Ser., Wadsworth pp. 270–286 (1983)Google Scholar
  12. 12.
    Burkholder, D.L.: Martingales and Fourier analysis in Banach spaces. in Probability and analysis (Varenna, 1985). Volume 1206 of Lecture Notes in Mathematics. Springer, Berlin, pp. 61–108 (1986)Google Scholar
  13. 13.
    Coifman R.R., Meyer Y., Stein E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Fridli S.: Hardy spaces generated by an integrability condition. J. Approx. Theory 113, 91–109 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Garnett, J.B.: Bounded analytic functions, 1st edn. Volume 236 of Graduate Texts in Mathematics, Springer, New York (2007)Google Scholar
  16. 16.
    Girardi M., Weis L.: Operator-valued Fourier multiplier theorems on L p(X) and geometry of Banach spaces. J. Funct. Anal. 204, 320–335 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gosselin J., Stempak K.: A weak-type estimate for Fourier-Bessel multipliers. Proc. Am. Math. Soc. 106, 655–662 (1989)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge, at the University Press (1934)Google Scholar
  19. 19.
    Hirschman, I.I. Jr.: Variation diminishing Hankel transforms. J. Anal. Math. 8, 307–336 (1960/1961)Google Scholar
  20. 20.
    Hytönen T.: Convolutions, multipliers and maximal regularity on vector-valued Hardy spaces. J. Evol. Equ. 5, 205–225 (2005)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hytönen T.: Littlewood–Paley–Stein theory for semigroups in UMD spaces. Rev. Mat. Iberoam 23, 973–1009 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hytönen T., van Neerven J., Portal P.: Conical square function estimates in UMD Banach spaces and applications to H -functional calculi. J. Anal. Math. 106, 317–351 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Hytönen T., Weis L.: The Banach space-valued BMO, Carleson’s condition, and paraproducts. J. Fourier Anal. Appl 16, 495–513 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kaiser C., Weis L.: Wavelet transform for functions with values in UMD spaces. Studia Math. 186, 101–126 (2008)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Kwapień S.: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 44, 583–595 (1972)MathSciNetMATHGoogle Scholar
  26. 26.
    Lebedev N.N.: Special functions and their applications. Dover Publications Inc., New York (1972)MATHGoogle Scholar
  27. 27.
    Marrero I., Betancor J.J.: Hankel convolution of generalized functions. Rend. Mat. Appl. 15(7), 351–380 (1995)MathSciNetMATHGoogle Scholar
  28. 28.
    Martínez T., Torrea J.L., Xu Q.: Vector-valued Littlewood–Paley–Stein theory for semigroups. Adv. Math. 203, 430–475 (2006)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Muckenhoupt B., Stein E.M.: Classical expansions and their relation to conjugate harmonic functions. Trans. Am. Math. Soc 118, 17–92 (1965)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Pisier, G.: Martingales in Banach spaces (in connection with type and cotype). Course IHP (2011)Google Scholar
  31. 31.
    Rubio de Francia, J.L.: Martingale and integral transforms of Banach space valued functions. In: Probability and Banach spaces (Zaragoza, 1985). Volume 1221 of Lecture Notes in Mathematics. Springer, Berlin pp. 195–222 (1986)Google Scholar
  32. 32.
    Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton (1993)Google Scholar
  33. 33.
    van Eijndhoven S.J.L., Graaf J.: Some results on Hankel invariant distribution spaces. Nederl. Akad. Wetensch. Indag. Math. 45, 77–87 (1983)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    van Neerven, J.: γ-radonifying operators—a survey. In: The AMSI-ANU workshop on spectral theory and harmonic analysis. Volume 44 of Proc. Centre Math. Appl. Austral. Nat. Univ., Canberra, pp. 1–61 (2010)Google Scholar
  35. 35.
    van Neerven, J.: Stochastic evolution equations. ISEM Lecture Notes (2007/08)Google Scholar
  36. 36.
    van Neerven J., Weis L.: Stochastic integration of functions with values in a Banach space. Studia Math. 166, 131–170 (2005)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Weinstein A.: Discontinuous integrals and generalized potential theory. Trans. Am. Math. Soc. 63, 342–354 (1948)MATHCrossRefGoogle Scholar
  38. 38.
    Zemanian A.H.: A distributional Hankel transformation. SIAM J. Appl. Math. 14, 561–576 (1966)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Zemanian A.H.: Generalized integral transformations. Dover Publications Inc., New York (1987)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Jorge J. Betancor
    • 1
  • Alejandro J. Castro
    • 1
  • Lourdes Rodríguez-Mesa
    • 1
  1. 1.Departamento de Análisis MatemáticoUniversidad de La LagunaLa LagunaSpain

Personalised recommendations