Positivity

, Volume 17, Issue 3, pp 459–473

Non-compact versions of Edwards’ Theorem

  • Nihat G. Gogus
  • Tony L. Perkins
  • Evgeny A. Poletsky
Article
  • 126 Downloads

Abstract

Edwards’ Theorem establishes duality between a convex cone in the space of continuous functions on a compact space X and the set of representing or Jensen measures for this cone. It is a direct consequence of the description of positive superlinear functionals on C(X). In this paper we obtain the description of such functionals when X is a locally compact σ-compact Hausdorff space. As a consequence we prove non-compact versions of Edwards’ Theorem.

Keywords

Superlinear functionals Envelopes Representing measures Jensen measures 

Mathematics Subject Classification

46A20 47B65 46A55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Nihat G. Gogus
    • 1
  • Tony L. Perkins
    • 2
  • Evgeny A. Poletsky
    • 2
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityOrhanli, TuzlaTurkey
  2. 2.Department of MathematicsSyracuse UniversitySyracuseUSA

Personalised recommendations