, Volume 17, Issue 2, pp 257–263

The positive aspects of smoothness in Banach lattices

Open Access


Let X be a Banach lattice, and let \({x\in X{\setminus}\{0\}}\). We study the structure of the set Grad(x), of all supporting functionals of x. If X is a Dedekind σ-complete Banach lattice, there is an isometry from Grad(x) onto Grad(|x|); hence the elements x and |x| are smooth simultaneously. And if, additionally, X* is strictly monotone then Grad(|x|) consists of positive functionals. As a by-product of our results we obtain that an arbitrary Banach lattice X is strictly monotone whenever its dual X* is smooth.


Smooth point Strictly monotone Banach lattice Orlicz space Marcinkiewicz space M-ideal 

Mathematics Subject Classification (2010)

46B20 46B42 


  1. 1.
    Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, New York (1985)MATHGoogle Scholar
  2. 2.
    Chen S.: Smoothness of Orlicz spaces. Comment. Math. Prace. Mat. 27, 49–58 (1987)MathSciNetMATHGoogle Scholar
  3. 3.
    Chen, S.: Geometry of Orlicz spaces, Dissertationes Math. 361 (1996)Google Scholar
  4. 4.
    Bian S., Hudzik H., Wang T.: Smooth, very smooth and strongly smooth points in Musielak-Orlicz sequence spaces. Bull. Aust. Math. Soc. 63, 441–457 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Harmand P., Werner D., Werner W.: M-ideals in Banach Spaces and Banach Algebras. Springer, Berlin (1993)MATHGoogle Scholar
  6. 6.
    Kamińska, A., Lee, H.J.: M-ideal properties in Marcinkiewicz spaces. Ann. Soc. Math. Pol. Ser. I. Comment. Math. (Special Issue) 123–144 (2004)Google Scholar
  7. 7.
    Kamińska A., Lee H.J., Lewicki G.: Extreme and smooth points in Lorentz and Marcinkiewicz spaces with applications to contractive projections. Rocky Mountain J. Math. 39, 1533–1572 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kaminska A., Parrish A.M.: Note on extreme points in Marcinkiewicz function spaces. Banach J. Math. Anal. 4, 1–12 (2010)MathSciNetMATHGoogle Scholar
  9. 9.
    Kamińska A., Parrish A.M.: Smooth points in Marcinkiewicz function spaces. J. Convex Anal. 18, 379–390 (2011)MathSciNetMATHGoogle Scholar
  10. 10.
    Kurc W.: A dual property to uniform monotonicity for Banach lattices. Collect. Math 44, 155–165 (1993)MathSciNetMATHGoogle Scholar
  11. 11.
    Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971)MATHGoogle Scholar
  12. 12.
    Plichko A., Wójtowicz M.: Copies of c 0(Γ) and (Γ)/c 0(Γ) in quotients of Banach spaces with applications to Orlicz and Marcinkiewicz spaces. Indag. Math. N.S. 18, 251–268 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Schaefer H.H., Zhang X-D.: Extension properties of order continuous functionals and applications to the theory of Banach lattices. Indag. Math. N.S. 5, 107–118 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wnuk W.: On the order-topological properties of the quotient space L/L A. Studia Math. 79, 139–149 (1984)MathSciNetMATHGoogle Scholar
  15. 15.
    Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam (1980)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Instytut MatematykiUniwersytet Kazimierza WielkiegoBydgoszczPoland

Personalised recommendations