Positivity

, Volume 16, Issue 4, pp 603–618

Structure of positive solution sets of sub-linear semi-positone operator equations

Article
  • 148 Downloads

Abstract

In this paper, first we obtain some results on the structure of the positive solution set of a nonlinear operator equation. Then using these results, we obtain some existence results for positive solutions of nonlinear operator equations. We use global bifurcation theories to show our main results.

Keywords

Structure of positive solutions set Sub-linear operator Global bifurcation theories 

Mathematics Subject Classification (2000)

47H11 34B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro A., Shivaji R.: Nonnegative solutions for a class of nonpositone problems. Proc. Roy. Soc. Edin. 108(A), 291–302 (1988)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Anuradha V., Hai D.D., Shivaji R. et al.: Existence results for superlinear semipositone BVP’S. Proc. Am. Math. Soc. 124, 757–763 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ma R., Wang R., Ren L.: Existence results for semi-positone boundary value problems. Acta. Math. Sci. 21, 189–195 (2001)MathSciNetMATHGoogle Scholar
  4. 4.
    Xu X., O’Regan D.: Existence of positive solutions for operator equations and applications to semi-positone problems. Positivity 10(2), 315–328 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Xu, X., Sun, J.: Unbounded connected component of the positive solutions set of some semi-positone problems, Topol. Methods Nonlinear Anal. (2011, preprint)Google Scholar
  6. 6.
    Ma R.: Positive solutions for semi-positone (k, nk) conjugate boundary value problems. J. Math. Anal. Appl. 252, 220–229 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ma R., Ma Q.Z.: Positive solutions for semi-positone m-point boundary value problems. Acta Mathematica Sinica 20(2), 273–282 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Agarwal R.P., Grace S.R., O’Regan D.: Discrete semi-positone higher-order equations. Comput. Math. Appl. 45, 1171–1179 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Agarwal R.P., O’ Regan D.: Nonpositone discrete boundary value problems. Nonlinear Anal. 39, 207–215 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Xu X.: Positive solutions for semi-positone impulsive differential boundary value problems. Chin. Ann. Math. 25, 717–724 (2004)MATHGoogle Scholar
  11. 11.
    Xu X.: Positive solutions for singular semi-positone boundary value problems. J. Math. Anal. Appl. 273, 480–491 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Xu X.: Multiplicity results for positive solutions of some semi-positone three-point boundary value problems. J. Math. Anal. Appl. 291, 673–689 (2004)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Castro A., Maya C., Shivaji R.: Nonlinear eigenvalue problems with semi-positone. Electron. J. Diff. Equ. Conf. 05, 33–49 (2000)MathSciNetGoogle Scholar
  14. 14.
    Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985)MATHCrossRefGoogle Scholar
  15. 15.
    Krasnosel’skil̆ M.A., Zabrel̆ko P.P.: Geometrical Methods of Nonlinear Analysis. Springer, Berlin (1984)CrossRefGoogle Scholar
  16. 16.
    Whyburn G.T.: Topological Analysis, Princeton Univ. Princeton University Press, Princeton (1958)Google Scholar
  17. 17.
    Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsXuzhou Normal UniversityXuzhouPeople’s Republic of China
  2. 2.Department of MathematicsNational University of IrelandGalwayIreland

Personalised recommendations