Positivity

, Volume 15, Issue 4, pp 571–594

Properties (u) and (V*) of Pelczynski in symmetric spaces of τ-measurable operators

Open Access
Article

Abstract

It is shown that order continuity of the norm and weak sequential completeness in non-commutative strongly symmetric spaces of τ-measurable operators are respectively equivalent to properties (u) and (V*) of Pelczynski. In addition, it is shown that each strongly symmetric space with separable (Banach) bidual is necessarily reflexive. These results are non-commutative analogues of well-known characterisations in the setting of Banach lattices.

Keywords

Measurable operators Property (u) Property (V*) 

Mathematics Subject Classification (2000)

Primary 46L52 Secondary 46E30 47A30 

References

  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, London (1985)Google Scholar
  2. 2.
    Bombal F.: (V *) sets and Pelczynski’s property (V *). Glasg. Math. J. 32, 109–120 (1990)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Diestel, J., Uhl, J.J. Jr.: Vector Measures. In: Math. Surveys, vol. 15. American Mathematical Society, Providence (1977)Google Scholar
  4. 4.
    Diestel, J.: Sequences and series in Banach spaces. In: Graduate Texts in Mathematics, vol. 92. Springer, Berlin (1984)Google Scholar
  5. 5.
    Dixmier, J.: von Neumann Algebras. In: Mathematical Library, vol. 27. North Holland, Amsterdam (1981)Google Scholar
  6. 6.
    Dodds P.G., Dodds T.K., de Pagter B.: Non-commutative Banach function spaces. Math. Z. 201, 583–597 (1989)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dodds P.G., Dodds T.K., de Pagter B.: Weakly compact subsets of symmetric operator spaces. Math. Proc. Camb. Philos. Soc. 110, 169–182 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dodds P.G., Dodds T.K., de Pagter B.: Non-commutative Köthe duality. Trans. Am. Math. Soc. 339, 717–750 (1993)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dodds, P.G., de Pagter, B., The non-commutative Yosida–Hewitt decomposition revisited. Trans. Am. Math. Soc (in press)Google Scholar
  10. 10.
    Fack T., Kosaki H.: Generalized s-numbers of τ-measurable operators. Pac. J. Math. 123, 269–300 (1986)MathSciNetMATHGoogle Scholar
  11. 11.
    Krein, S.G., Petunin, Ju.I., Semenov, E.M.: Interpolation of linear operators. In: Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence (1982)Google Scholar
  12. 12.
    Lozanovskiĭ G.Ya.: On isomorphic Banach lattices. Sib. Math. J. 10, 67–71 (1969)Google Scholar
  13. 13.
    Luxemburg, W.A.J.: Banach Function Spaces, PhD Thesis, Delft Institute of Technology (1955)Google Scholar
  14. 14.
    Luxemburg W.A.J.: Notes on Banach Function Spaces, XIVA. Indag. Math. 27, 229–239 (1965)MathSciNetGoogle Scholar
  15. 15.
    Meyer-Nieberg P.: Zur schwachen Kompactheit in Banachverbänden. Math. Z. 134, 303–315 (1973)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991)Google Scholar
  17. 17.
    Nelson E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974)MATHCrossRefGoogle Scholar
  18. 18.
    Ogasawara, T.: Vector Lattices. Tokyo (1948) (in Japanese)Google Scholar
  19. 19.
    Pelczyński A.: A connection between weakly unconditional convergence and weak completeness of Banach spaces. Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. 6, 251–253 (1958)MATHGoogle Scholar
  20. 20.
    Pelczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci. 10, 641–648 (1962)MATHGoogle Scholar
  21. 21.
    Pfitzner H.: l-summands in their biduals have Pelczynski’s property (V *). Studia Math. 104, 91–98 (1994)MathSciNetGoogle Scholar
  22. 22.
    Randrianantoanina N.: Pelczynski’s property (V *) for symmetric operator spaces. Proc. Am. Math. Soc. 125, 801–806 (1997)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Saab E., Saab P.: On Pelczynski’s properties (V) and (V *). Pac. J. Math. 125, 205–210 (1986)MathSciNetMATHGoogle Scholar
  24. 24.
    Takesaki M.: Theory of Operator Algebras I. Springer, New-York (1979)MATHCrossRefGoogle Scholar
  25. 25.
    Terp, M.: L p-spaces associated with von Neumann algebras. In: Notes. Copenhagen University, Copenhagen (1981)Google Scholar
  26. 26.
    Tzafriri L.: Reflexivity in Banach lattices and their subspaces. J. Funct. Anal. 10, 1–18 (1972)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.School of Computer Science, Mathematics and EngineeringFlinders UniversityAdelaideAustralia
  2. 2.Delft Institute of Applied Mathematics, Faculty EEMCSDelft University of TechnologyDelftThe Netherlands

Personalised recommendations