, Volume 14, Issue 4, pp 715–729 | Cite as

The dual space of L p of a vector measure

  • F. Galaz-Fontes


For a vector measure ν having values in a real or complex Banach space and \({p \in}\) [1, ∞), we consider L p (ν) and \({L_{w}^{p}(\nu)}\), the corresponding spaces of p-integrable and scalarly p-integrable functions. Given μ, a Rybakov measure for ν, and taking q to be the conjugate exponent of p, we construct a μ-Köthe function space E q (μ) and show it is σ-order continuous when p > 1. In this case, for the associate spaces we prove that L p (ν) ×  = E q (μ) and \({E_q(\mu)^\times = L_w^p(\nu)}\). It follows that \({L_p (\nu) ^{**} = L_w^p (\nu)}\). We also show that L 1 (ν) ×  may be equal or not to E (μ).


Vector measure Function norm Associate space σ-Order continuity Fatou property 

Mathematics Subject Classification (2000)

46G10 46E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett C., Sharpley R.: Interpolation of Operators. Academic Press, Boston (1988)zbMATHGoogle Scholar
  2. 2.
    Curbera G.: When L 1 of a vector measure is an AL-space. Pacific J. Math. 162(2), 287–303 (1994)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Curbera G.: Banach space properties of L 1 of a vector measure. Proc. Am. Math. Soc 123(12), 3797–3806 (1995)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Curbera G., Ricker W.J.: Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. N. S. 17(2), 187–204 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Curbera G., Ricker W.J.: The Fatou property in p-convex Banach lattices. J. Math Anal. Appl. 328, 287–294 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Diestel, J., Uhl, J.J. Jr.: Vector Measures, Mathematical Surveys, No. 15, Amer. Math. Soc., Providence (1977)Google Scholar
  7. 7.
    Fernández A., Mayoral F., Naranjo F., Sáez C., Sánchez-Pérez E.A.: Spaces of p-integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fernández A., Naranjo F., Ricker W.J.: Completeness of L 1 spaces for measures with values in complex spaces. J. Math. Anal. Appl. 223, 76–87 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ferrando I., Rodríaguez J.: The weak topology on L p of a vector measure. Topology Appl. 155, 1439–1444 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lindenstrauss J., Tzafriri L.: Classical Banach spaces II. Springer, Berlin (1979)zbMATHGoogle Scholar
  11. 11.
    Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces, vol. I. North Holland Publishing Co., Amsterdam (1971)zbMATHGoogle Scholar
  12. 12.
    Okada S.: The dual space of L 1 (μ) for a vector measure μ. J. Math. Anal. Appl. 177, 583–599 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Okada, S., Ricker, W.J., Sánchez-Pérez, E.A.: Optimal domain and integral extension of operators Acting in Function Spaces, Oper. Theory Adv. Appl., vol. 180, Birkhäuser Verlag AG, Basel (2008)Google Scholar
  14. 14.
    Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  15. 15.
    Sánchez Pérez E.A.: Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois J. Math. 45, 907–923 (2001)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Centro de Investigación en MatemáticasGuanajuato Gto.México

Personalised recommendations