, Volume 15, Issue 2, pp 241–251 | Cite as

c0-Singular and 1-singular operators between vector-valued Banach lattices



Given an operator T : XY between Banach spaces, and a Banach lattice E consisting of measurable functions, we consider the point-wise extension of the operator to the vector-valued Banach lattices T E : E(X) → E(Y) given by T E (f)(ω) = T(f(ω)). It is proved that for any Banach lattice E which does not contain c 0, the operator T is an isomorphism on a subspace isomorphic to c 0 if and only if so is T E . An analogous result for invertible operators on subspaces isomorphic to 1 is also given.


Vector-valued Banach lattice c0-Singular operator 1-Singular operator 

Mathematics Subject Classification (2000)

47A05 46B42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albiac F., Kalton N.J.: Topics in Banach Space Theory, Graduate Texts in Mathematics, 233. Springer, New York (2006)Google Scholar
  2. 2.
    Aliprantis C.D., Burkinshaw O.: Positive Operators. Springer, Dordrecht (2006)MATHGoogle Scholar
  3. 3.
    Bourgain J.: An averaging result for c 0-sequences. Bull. Soc. Math. Belg. 30, 83–87 (1978)MathSciNetMATHGoogle Scholar
  4. 4.
    Bourgain J.: An averaging result for 1-sequences and applications to weakly conditionally compact sets in L X1. Israel J. Math. 32, 289–298 (1979)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cembranos P., Mendoza J.: Banach Spaces of Vector-valued Functions, Lecture Notes in Mathematics, 1676. Springer, Berlin (1997)Google Scholar
  6. 6.
    Drewnowski L., Labuda I.: Topological vector spaces of Bochner measurable functions, Illinois J. Math. 46, 287–318 (2002)MathSciNetMATHGoogle Scholar
  7. 7.
    Flores J., Hernández F.L., Kalton N.J., Tradacete P.: Characterizations of strictly singular operators on Banach lattices. J. London Math. Soc. 79, 612–630 (2009)MATHCrossRefGoogle Scholar
  8. 8.
    Figiel T., Johnson W.B., Tzafriri L.: On Banach lattices and spaces having local unconditional structure with applications to Lorentz funtion spaces. J. Approx. Theory 13, 395–412 (1975)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hensgen W.: Some properties of the vector-valued Banach ideal space E(X) derived from those of E and X. Collect. Math. 43, 1–13 (1992)MathSciNetMATHGoogle Scholar
  10. 10.
    Hoffmann-Jorgensen J.: Sums of independent Banach space valued random variables. Studia Math. 52, 159–186 (1974)MathSciNetGoogle Scholar
  11. 11.
    Johnson W.B., Schechtman G.: Multiplication operators on L(L p) and p-strictly singular operators. J. Eur. Math. Soc. 10(4), 1105–1119 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kadeč M.I., Pełczyński A.: Bases, lacunary sequences and complemented subspaces in the spaces L p. Studia Math. 21, 161–176 (1962)MathSciNetMATHGoogle Scholar
  13. 13.
    Kwapień S.: On Banach spaces containing c 0. A supplement to the paper by J. Hoffmann-Jørgensen: “Sums of independent Banach space valued random variables”. Studia Math. 52, 187–188 (1974)MathSciNetMATHGoogle Scholar
  14. 14.
    Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II: Function Spaces. Springer, Berlin (1979)MATHGoogle Scholar
  15. 15.
    Nowak M.: Conditional and relative weak compactness in vector-valued function spaces. J. Convex Anal. 12, 447–463 (2005)MathSciNetMATHGoogle Scholar
  16. 16.
    Pisier G.: Une propriéte de stabilité de la classe des espaces ne contenant pas l 1. C. R. Acad. Sci. Paris Sér. A 86, 747–749 (1978)MathSciNetGoogle Scholar
  17. 17.
    Talagrand M.: Weak Cauchy sequences in L 1(E). Am. J. Math. 106, 703–724 (1984)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Weis L.: On the surjective (injective) envelope of strictly (co-) singular operators. Studia Math. 54, 285–290 (1975)MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada y AnálisisUniversidad de BarcelonaBarcelonaSpain

Personalised recommendations