, Volume 14, Issue 4, pp 841–847 | Cite as

The ideal center of the dual of a Banach lattice



Let E be a Banach lattice. Its ideal center Z(E) is embedded naturally in the ideal center Z(E′) of its dual. The embedding may be extended to a contractive algebra and lattice homomorphism of Z(E)ʺ into Z(E′). We show that the extension is onto Z(E′) if and only if E has a topologically full center. (That is, for each \({x\in E}\), the closure of Z(E)x is the closed ideal generated by x.) The result can be generalized to the ideal center of the order dual of an Archimedean Riesz space and in a modified form to the orthomorphisms on the order dual of an Archimedean Riesz space.

Mathematics Subject Classification (2000)

Primary 47B38 47B60 46B42 Secondary 46H25 47L10 


Banach lattice Ideal center Topologically full Order ideal Banach C(K)-module 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich Y.A., Arenson E.L., Kitover A.K.: Banach C(K)-modules and Operators Preserving Disjointness. Pitman Research Notes, 277. Wiley, New York (1992)Google Scholar
  2. 2.
    Aliparantis C.D., Burkinshaw O.: Positive Operators. Academic Press, New York (1985)Google Scholar
  3. 3.
    Arens R.: The adjoint of a bilinear operation. Proc. Am. Math. Soc. 2, 839–848 (1951)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Evans R.: Embedding C(K) in B(X). Math. Scand. 48, 119–136 (1981)MATHMathSciNetGoogle Scholar
  5. 5.
    Gillespie T.A.: Factorization in Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 43, 287–300 (1981)MATHMathSciNetGoogle Scholar
  6. 6.
    Goullet de Rugy A.: La structure idéale des M-espaces. J. Math. Pures Appl. 51(9), 331–337 (1972)MATHMathSciNetGoogle Scholar
  7. 7.
    Hadwin D., Orhon M.: Reflexivity and approximate reflexivity for Boolean algebras of projections. J. Funct. Anal. 87, 348–358 (1989)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hart, D.R.: Disjointness preserving operators, Ph. D. Thesis., Pasadena: California Institute of Technology (1983)Google Scholar
  9. 9.
    Huijsmans C.B., de Pagter B.: The order bidual of lattice ordered algebras. J. Funct. Anal. 59, 41–64 (1984)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lozanovsky G.Ya.: On some Banach lattices. Sibirsk. Mat. Zh. 10, 584–599 (1969)Google Scholar
  11. 11.
    Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North Holland, Amsterdam (1971)MATHGoogle Scholar
  12. 12.
    Meyer M.: Richesses du centre d’un espace vectoriel réticulé. Math. Ann. 236, 147–169 (1978)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Önder H., Orhon M.: Transitive operator algebras on the n-fold direct sum of a cyclic Banach space. J. Oper. Theory 22, 99–107 (1989)MATHGoogle Scholar
  14. 14.
    Orhon M.: Boolean algebras of commuting projections. Math. Z. 183, 531–537 (1983)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schaefer H.H.: Banach lattices and positive operators. Springer, Berlin (1974)MATHGoogle Scholar
  16. 16.
    Wickstead A.W.: The structure space of a Banach lattice. J. Math. Pures Appl. 56(9), 33–45 (1977)MathSciNetGoogle Scholar
  17. 17.
    Wickstead A.W.: Extremal structure of cones of operators. Quart. J. Math. Oxford Ser. 32(2), 239–253 (1981)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wickstead A.W.: Banach lattices with a trivial centre. Proc. Roy. Irish Acad. Sect. A 88, 71–83 (1988)MathSciNetGoogle Scholar
  19. 19.
    Wickstead A.W.: Banach lattices with topologically full centre. Vladikavkaz Mat. Zh. 11, 50–60 (2009)MathSciNetGoogle Scholar
  20. 20.
    Zaanen A.C.: Riesz Spaces II. North Holland, Amsterdam (1983)MATHGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of New HampshireDurhamUSA

Personalised recommendations