Positivity

, Volume 15, Issue 1, pp 135–154

Properties of representations of operators acting between spaces of vector-valued functions

Article

Abstract

A well-known result going back to the 1930s states that all bounded linear operators mapping scalar-valued L1-spaces into L-spaces are kernel operators and that in fact this relation induces an isometric isomorphism between the space of such operators and the space of all bounded kernels. We extend this result to the case of spaces of vector-valued functions. A recent result due to Arendt and Thomaschewski states that the local operators acting on Lp-spaces of functions with values in separable Banach spaces are precisely the multiplication operators. We extend this result to non-separable dual spaces. Moreover, we relate positivity and other order properties of the operators to corresponding properties of the representations.

Keywords

Vector measures Representation of operators Dunford–Pettis theorems Tensor products Kernel operators Multiplication operators Banach lattices Positive operators Regular operators p-tensor product 

Mathematics Subject Classification (2000)

46G10 47B34 46M10 47B65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). Reprint of the 1985 originalGoogle Scholar
  2. 2.
    Aliprantis, C.D., Tourky, R.: Cones and Duality, Graduate Studies in Mathematics, vol. 84. American Mathematical Society, Providence (2007)Google Scholar
  3. 3.
    Amann H.: Elliptic operators with infinite-dimensional state spaces. J. Evol. Equ. 1(2), 143–188 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Andrews K.T.: The Radon–Nikodym property for spaces of operators. J. Lond. Math. Soc. II. Ser. 28, 113–122 (1983)MATHCrossRefGoogle Scholar
  5. 5.
    Arendt, W.: Fortsetzungsprobleme für Operatoren zwischen Banachräumen und Banachverbänden, Diplomarbeit. Universität Tübingen, Tübingen (1975)Google Scholar
  6. 6.
    Arendt W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178(2), 271–287 (1981)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates, evolutionary equations, vol. 1. Handb. Differ. Equ. North-Holland, Amsterdam, pp. 1–85 (2004)Google Scholar
  8. 8.
    Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96. Birkhäuser Verlag, Basel (2001)Google Scholar
  9. 9.
    Arendt W., Bukhvalov A.V.: Integral representations of resolvents and semigroups. Forum Math. 6, 111–135 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Arendt W., Thomaschewski S.: Local operators and forms. Positivity 9(3), 357–367 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ausekle J.A., Oja E.F.: Pitt’s Theorem for the Lorentz and Orlicz sequence spaces. Math. Notes 61(1), 16–21 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Burke, M.R.: Liftings for noncomplete probability spaces. Papers on general topology and applications (Madison, WI, 1991), vol. 704, pp. 34–37. New York Acad. Sci. (1993)Google Scholar
  13. 13.
    Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)Google Scholar
  14. 14.
    Defant, A., Floret, K.: Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176. North-Holland, Amsterdam (1993)Google Scholar
  15. 15.
    Denk R., Hieber M., Prüss J.: Optimal L p-L q-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257(1), 193–224 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Diestel, J., Fourie, J.H., Swart, J.: The Metric Theory of Tensor Products. Grothendieck’s résumé revisited. Am. Math. Soc. Providence (2008)Google Scholar
  17. 17.
    Dunford N., Pettis B.J.: Linear operations on summable functions. Trans. Am. Math. Soc. 47, 323–392 (1940)MATHMathSciNetGoogle Scholar
  18. 18.
    Floret K.: Der Satz von Dunford–Pettis und die Darstellung von Massen mit Werten in lokalkonvexen Räumen. Math. Ann. 208, 203–212 (1974)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fremlin, D.H.: Broad Foundations, Measure Theory, vol. 2. Torres Fremlin, Colchester (2001)Google Scholar
  20. 20.
    Fremlin, D.H.: Measure Algebras, Measure Theory, vol. 3, Torres Fremlin, Colchester (2002)Google Scholar
  21. 21.
    Fremlin, D.H.: Topological Measure Spaces, Measure Theory, vol. 4, Part I, Torres Fremlin, Colchester (2003)Google Scholar
  22. 22.
    Gelfand I.: Abstrakte funktionen und lineare operatoren. Rec. Math. Moscou. n. Ser. 4, 235–284 (1938)MATHGoogle Scholar
  23. 23.
    Ionescu Tulcea, A., Ionescu Tulcea, C.: Topics in the Theory of Lifting. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48. Springer-Verlag New York Inc., New York (1969)Google Scholar
  24. 24.
    Johnson W.B., König H., Maurey B., Retherford J.R.: Eigenvalues of p-summing and l p-type operators in Banach spaces. J. Funct. Anal. 32(3), 353–380 (1979)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. 1, Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence (1997). Elementary theory, Reprint of the 1983 originalGoogle Scholar
  26. 26.
    Kantorovich L.V., Vulikh B.Z.: Sur la représentation des opérations linéaires. Compos. Math. 5, 119–165 (1937)MATHGoogle Scholar
  27. 27.
    Köthe, G.: Topological Vector Spaces II. Springer, Berlin (1979)MATHGoogle Scholar
  28. 28.
    Kuchment P.: Quantum graphs II: Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38(22), 4887–4900 (2005)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977)Google Scholar
  30. 30.
    Pietsch A.: History of Banach Spaces and Linear Operators. Birkhäuser Boston Inc., Boston (2007)MATHGoogle Scholar
  31. 31.
    Rosenthal H.P.: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from L p (μ) to L r (ν). J. Funct. Anal. 4, 176–214 (1969)MATHCrossRefGoogle Scholar
  32. 32.
    Schaefer, H.H.: Aspects of Banach Lattices. Studies in Functional Analysis. MAA Stud. Math. vol. 21, pp. 158–221. Math. Assoc. America, Washington (1980)Google Scholar
  33. 33.
    Schaefer, H.H., Schlotterbeck, U.: On the approximation of kernel operators by operators of finite rank. J. Approx. Theory, 33–39 (1975)Google Scholar
  34. 34.
    Schaefer, H.H., Wolff, M.P.H.: Topological Vector Spaces. Springer, Berlin (1999)MATHGoogle Scholar
  35. 35.
    Schlotterbeck, U.: Tensorprodukte von Banachverbänden und positive Operatoren, Habilitationsschrift. Universität Tübingen, Tübingen (1977)Google Scholar
  36. 36.
    von Below J., Lubary J.A.: The eigenvalues of the Laplacian on locally finite networks. Results Math. 47, 199–225 (2005)MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  1. 1.Institute of AnalysisUniversity of UlmUlmGermany
  2. 2.Institute of Applied AnalysisUniversity of UlmUlmGermany

Personalised recommendations