Positivity

, Volume 15, Issue 1, pp 87–103

Approximation theorems by positive linear operators in weighted spaces

Article

Abstract

In this study, we obtain some Korovkin type approximation theorems by positive linear operators on the weighted space of all real valued functions defined on the real two-dimensional Euclidean space \({\mathbb{R}^2}\). This paper is mainly consisted of two parts: a Korovkin type approximation theorem via the concept of A-statistical convergence and a Korovkin type approximation theorem via \({\mathcal {A}}\)-summability.

Keywords

A-statistical convergence Matrix summability The Korovkin type theorem Positive linear operators 

Mathematics Subject Classification (2000)

40A05 41A36 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altomare F., Campiti M.: Korovkin Type Approximation Theory and its Application. Walter de Gryter, Berlin (1994)Google Scholar
  2. 2.
    Atlihan Ö.G., Orhan C.: Matrix summability and positive linear operators. Positivity 11, 387–398 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bell H.T.: Order summability and almost convergence. Proc. Am. Math. Soc. 38, 548–552 (1973)MATHCrossRefGoogle Scholar
  4. 4.
    Bojanic R., Cheng R.: Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials. Proc. Conf. Can. Math. Soc. 3, 5–17 (1983)MathSciNetGoogle Scholar
  5. 5.
    Bojanic R., Khan M.K.: Summability of Hermite-Fejér interpolation for function of bounded variation. J. Nat. Sci. Math. 32(1), 5–10 (1992)MATHGoogle Scholar
  6. 6.
    Connor J.S.: On strong matrix summability with respect to a modulus and statistical convergence. Can. Math. Bull. 32, 194–198 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Devore, R.A.: The approximation of continuous functions by positive linear operators. Lecture Notes in Mathematics, vol. 293. Springer, Berlin (1972)Google Scholar
  8. 8.
    Duman O., Orhan C.: Statistical approximation by positive linear operators. Studia Math. 161(2), 187–197 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fast H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)MATHMathSciNetGoogle Scholar
  10. 10.
    Freedman A.R., Sember J.J.: Densities and summability. Pac. J. Math. 95, 293–305 (1981)MATHMathSciNetGoogle Scholar
  11. 11.
    Fridy J.A.: On statistical convergence. Analysis 5, 301–313 (1985)MATHMathSciNetGoogle Scholar
  12. 12.
    Gadjiev A.D.: On P.P. Korovkin type theorems. Mat. Zametki 20, 781–786 (1976)MathSciNetGoogle Scholar
  13. 13.
    Gadjiev A.D.: Linear positive operators in weighted space of functions of several variables. Izv. Acad. Nauk Azerbaidzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1(4), 32–37 (1980)Google Scholar
  14. 14.
    Hacısalihoğlu H., Gadjiev A.D.: Convergence of Linear Positive Operators. Ankara University Publications, Turkish (1995)Google Scholar
  15. 15.
    Hardy G.H.: Divergent Series. Oxford University Press, London (1949)MATHGoogle Scholar
  16. 16.
    Klok E.: The statistical convergence in Banach spaces. Acta Comment. Tartuensis 928, 41–52 (1991)Google Scholar
  17. 17.
    Kolk E.: Matrix summability of statistically convergent sequence. Analysis 13, 77–83 (1993)MATHMathSciNetGoogle Scholar
  18. 18.
    Korovkin P.P.: Linear Operators and Approximation Theory. Hindustan Public Corporation, Delhi (1960)Google Scholar
  19. 19.
    Miller H.I.: A measure theoretical subsequence characterization of statistical convergence. Trans. Am. Math. Soc. 347, 1811–1819 (1995)MATHCrossRefGoogle Scholar
  20. 20.
    Miller H.I., Orhan C.: On almost convergent and statistically convergent subsequences. Acta Math. Hung. 93, 135–151 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lorentz G.G.: A contribution to the theorem of divergent sequences. Acta Math. 80, 167–190 (1948)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Stieglitz M.: Eine verallgenmeinerung des begriffs festkonvergenz. Math. Japonica 18, 53–70 (1973)MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  1. 1.Department of Information and Mathematics SciencesChina Jiliang UniversityHangzhouPeople’s Republic of China

Personalised recommendations