, Volume 15, Issue 1, pp 17–48

Hausdorff means and moment sequences



We prove Schur’s theorem on the complete symmetric functions by using Hausdorff means. This approach leads to a more general result and to some new properties of moment sequences.


Moment sequence Hausdorff mean Complete symmetric function 

Mathematics Subject Classification (2000)

40G05 30E05 05E05 26E60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahiezer, N.I., Krein, M.: Some Questions in the Theory of Moments. Am. Math. Soc. Translations, Providence (1962)Google Scholar
  2. 2.
    Belbachir H.: A multinomial extension of an inequality of Haber. J. Ineq. Pure Appl. Math. 9, 1–5 (2008)MathSciNetGoogle Scholar
  3. 3.
    Bennett, G.: Mercer’s inequality and totally monotonic sequences. (to appear)Google Scholar
  4. 4.
    Brenti, F.: Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Am. Math. Soc. 81(413), vii + 106 pp (1989)Google Scholar
  5. 5.
    Callan D.: On generating functions involving the square root of a quadratic polynomial. J. Integer Seq. 10, 1–7 (2007)MathSciNetGoogle Scholar
  6. 6.
    Chu W.: Finite differences and determinant identities. Linear Alg. Appl. 430, 215–228 (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Davenport H., Pólya G.: On the product of two power series. Canad. J. Math. 1, 1–5 (1949)MATHCrossRefGoogle Scholar
  8. 8.
    DeTemple D.W., Robertson J.M.: On generalized symmetric means of two variables. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–637, 236–238 (1979)MathSciNetGoogle Scholar
  9. 9.
    Flajolet P., Sedgewick R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  10. 10.
    Graham R.L., Knuth D.E., Patashnik O.: Concrete Mathematics. Addison-Wesley Publ. Co., Reading (1989)MATHGoogle Scholar
  11. 11.
    Haber S.: An elementary inequality. Int. J. Math. Math. Sci. 2, 531–535 (1979)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hardy G.H.: Divergent Series. Oxford University Press, Oxford (1949)MATHGoogle Scholar
  13. 13.
    Hardy G.H., Littlewood J.E., Pólya G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1967)Google Scholar
  14. 14.
    Harper L.H.: Stirling behavior is asymptotically normal. Ann. Math. Statist. 38, 410–414 (1967)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kurtz D.C.: A note on concavity properties of triangular arrays of numbers. J. Combin. Theory Ser. A 13, 135–139 (1972)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Laguerre E.: Oeuvres, vol. I. Gauthier-Villars, Paris (1898)Google Scholar
  17. 17.
    Lieb E.H.: Concavity properties and a generating function for Stirling numbers. J. Combin. Theory 5, 203–206 (1968)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lorentz G.G.: Logarithmic concavity. Am. Math. Monthly 61, 205 (1954)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Menon K.V.: Inequalities for symmetric functions. Duke Math. J. 35, 37–45 (1968)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Menon K.V.: Inequalities for generalized symmetric functions. Canad. Math. Bull. 12, 615–623 (1969)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Menon K.V.: An inequality of Schur and an inequality of Newton. Proc. Am. Math. Soc. 22, 441–449 (1969)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mercer A.M.D.: A note on a paper by S. Haber. Int. J. Math. Math. Sci. 6, 609–611 (1983)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Milne-Thomson L.M.: The Calculus of Finite Differences. Macmillan, London (1933)Google Scholar
  24. 24.
    Mitrinovic D.S.: Analytic Inequalities. Springer, New York (1970)MATHGoogle Scholar
  25. 25.
    Neuman E.: On generalized symmetric means and Stirling numbers of the second kind. Zastus. Mat. 18, 645–656 (1985)MATHMathSciNetGoogle Scholar
  26. 26.
    Neuman E.: Inequalities involving generalized symmetric means. J. Math. Anal. Appl. 120, 315–320 (1986)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Neuman E.: On complete symmetric functions. SIAM J. Math. Anal. 19, 736–750 (1988)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pólya G., Szegö G.: Problems and Theorems in Analysis II, 2nd edn. Springer, New York (1976)Google Scholar
  29. 29.
    Radoux C.: The Hankel determinant of exponential polynomials: a very short proof and a new result concerning Euler numbers. Am. Math. Monthly 109, 277–278 (2002)MATHCrossRefGoogle Scholar
  30. 30.
    Shohat J.A., Tamarkin J.D.: The Problem of Moments. Amer. Math. Soc., New York (1943)MATHGoogle Scholar
  31. 31.
    Sylvester J.J.: Mathematical Papers, 2. Cambridge University Press, Cambridge (1908)Google Scholar
  32. 32.
    Szegö G.: Orthogonal Polynomials. Amer. Math. Soc., New York (1939)Google Scholar
  33. 33.
    Szegö G.: On an inequality of P. Turán concerning Legendre polynomials. Bull. Am. Math. Soc. 54, 401–405 (1948)MATHCrossRefGoogle Scholar
  34. 34.
    Whiteley J.N.: A generalization of a theorem of Newton. Proc. Am. Math. Soc. 13, 144–151 (1962)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations