, Volume 14, Issue 2, pp 257–283 | Cite as

Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space

  • Björn S. RüfferEmail author


Given monotone operators on the positive orthant in n-dimensional Euclidean space, we explore the relation between inequalities involving those operators, and induced monotone dynamical systems. Attractivity of the origin implies stability for these systems, as well as a certain inequality, the no-joint-increase condition. Under the right perspective the converse is also true. In addition we construct an unbounded path in the set where trajectories of the dynamical system decay monotonically, i.e., we solve a positive continuous selection problem.


Monotone operators and inequalities Positive systems Comparison functions Decay sets Omega paths Monotone selections 

Mathematics Subject Classification (2000)

Primary 47H07 Secondary 15A48 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman A., Plemmons R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1979)zbMATHGoogle Scholar
  2. 2.
    Dashkovskiy S., Rüffer B.S., Wirth F.R.: An ISS small gain theorem for general networks. Math. Control Signals Syst. 19(2), 93–122 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dashkovskiy, S., Rüffer, B.S., Wirth, F.R.: Small gain theorems for large scale systems and construction of ISS Lyapunov functions. January 2009 (submitted)Google Scholar
  4. 4.
    Hahn W.: Theorie und Anwendung der direkten Methode von Ljapunov. Ergebnisse der Mathematik und ihrer Grenzgebiete N. F., Heft 22. Springer, Berlin (1959)Google Scholar
  5. 5.
    Hahn, W.: Stability of motion. Translated from the German manuscript by Arne P. Baartz. Die Grundlehren der mathematischen Wissenschaften, Band 138. Springer, New York (1967)Google Scholar
  6. 6.
    Horvath C.D., Lassonde M.: Intersection of sets with n-connected unions. Proc. Am. Math. Soc. 125(4), 1209–1214 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Knaster B., Kuratowski C., Mazurkiewicz S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fundamenta 14, 132–137 (1929)zbMATHGoogle Scholar
  8. 8.
    Krasnosel′skiĭ M.A.: The Operator of Translation along the Trajectories of Differential Equations. American Mathematical Society, Providence (1968)Google Scholar
  9. 9.
    Krasnosel′skiĭ M.A., Zabreĭko P.P.: Geometrical Methods of Nonlinear Analysis. Springer, Berlin (1984)Google Scholar
  10. 10.
    Kuratowski K.: Introduction to Set Theory and Topology. Pergamon Press, New York (1961)Google Scholar
  11. 11.
    Lassonde M.: Sur le principe KKM. C. R. Acad. Sci. Paris Sér. I Math. 310(7), 573–576 (1990)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Lur Y.-Y.: On the asymptotic stability of nonnegative matrices in max algebra. Linear Algebra Appl. 407, 149–161 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Munkres J.R.: Topology: A First Course. Prentice–Hall, Englewood Cliffs (1975)zbMATHGoogle Scholar
  14. 14.
    Potrykus, H.G.: An idempotent-Analytic ISS Small Gain Theorem with Applications to Complex Process Models. PhD thesis, The University of Texas at Austin (2002)Google Scholar
  15. 15.
    Potrykus, H.G., Allgöwer, F., Joe Qin, S.: The Character of an Idempotent-analytic Nonlinear Small Gain Theorem. In Positive systems (Rome 2003). Lecture Notes in Control and Information Sciences, vol. 294, pp. 361–368. Springer, Berlin (2003)Google Scholar
  16. 16.
    Rüffer, B.S.: Monotone Systems, Graphs, and Stability of Large-Scale Interconnected Systems. PhD thesis, Fachbereich 3, Mathematik und Informatik, Universität Bremen, Germany, 2007.
  17. 17.
    Teel, A.: Input-to-state stability and the nonlinear small gain theorem. Chapter 12 in his lecture notes, courtesy due to private communication, June 2005Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleCallaghanAustralia

Personalised recommendations