, Volume 13, Issue 2, pp 339–366 | Cite as

A bilinear oscillatory integral along parabolas



We establish an \(L^\infty \times L^2 \rightarrow L^2\) norm estimate for a bilinear oscillatory integral operator along parabolas incorporating oscillatory factors \(e^{i|t|^{-\beta}}\).


Bilinear operator oscillatory integral 

Mathematics Subject Classification (2000)

Primary 42B20, 42B25 Secondary 46B70, 47B38 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Carbery, M. Christ, J. Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc., 12 (1999), 981–1015.Google Scholar
  2. 2.
    S. Chandarana, Lp bounds for hypersingular integral operators along curves, Pacific J. Math., 175 (1996), 389–416.Google Scholar
  3. 3.
    J. Chen, D. Fan, M. Wang, X. Zhu, Lp bounds for hyper Hilbert transform along curves, Proc. Amer. Math Soc., 136 (2008), 3145–3153.Google Scholar
  4. 4.
    M. Christ, Hilbert transforms along curves, I: Nilpotent groups, Ann. Math., 122 (1985), 575–596.Google Scholar
  5. 5.
    M. Christ, Hilbert transforms along curves, II: A flat case, Duke Math. J. 52 (1985), 887–894.Google Scholar
  6. 6.
    M. Christ, X. Li, T. Tao, C. Thiele, On multilinear oscillatory integrals, singular and nonsingular, Duke Math. J., 130(2) (2005), 321–351.Google Scholar
  7. 7.
    M. Christ, A. Nagel, E. Stein, S. Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann Math., 150 (1999), 489–577.Google Scholar
  8. 8.
    R.R. Coifman, Y. Meyer, Commutateurs dintégrales singuliéres at opérateuers multilinéaires, Ann. Inst. Fourier, Greenoble 28 (1978), 177–202.Google Scholar
  9. 9.
    R.R. Coifman, Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Asterisque, 57 (1978).Google Scholar
  10. 10.
    J. Duoandikoetxea, J.L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 84 (1986), 541–561.Google Scholar
  11. 11.
    E.B. Fabes, N.M. Riviere, Singular integral with mixed homogeneity, Studia. Math., 27 (1966), 19–38.Google Scholar
  12. 12.
    C. Fefferman, E. Stein, Hpspaces of several variables, Acta Math., 229 (1972), 137–193.Google Scholar
  13. 13.
    H. Furstenberg, Nonconventional ergodic averages, Proceedings of Symposia in Pure Math., 50 (1990), 43–56Google Scholar
  14. 14.
    L. Grafakos, X. Li, The disc as a bilinear multiplier, Am. J. Math., 128 (2006), 91–119.Google Scholar
  15. 15.
    I. Hirschman Jr., On multiplier transformations, Duke Math. J., 26 (1959), 221–242.Google Scholar
  16. 16.
    L. Hörmander, Oscillatory integrals and multipliers on FLp, Ark. Mat., 11 (1973), 1–11.Google Scholar
  17. 17.
    B. Host, B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. Math. (2) 161(1) (2005), 397–488.Google Scholar
  18. 18.
    M. Lacey, C. Thiele, Lp estimates for the bilinear Hilbert tansform for\(2< p <\infty\), Ann. Math. 146(2) (1997), 693–724.Google Scholar
  19. 19.
    A. Nagel, I. Vance, S. Wainger, D. Weinberg, Hilbert transforms for convex curves, Duke. Math. J., 50 (1983), 735–744.Google Scholar
  20. 20.
    D.H. Phong, E.M. Stein, On a stopping process for oscillatory integrals, J. Geom. Anal., 4 (1994), 104–120.Google Scholar
  21. 21.
    C.D. Sogge, Fourier integrals in classical analysis, Cambridge University Press, (1993).Google Scholar
  22. 22.
    E. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton (1993).Google Scholar
  23. 23.
    E. Stein, Oscillatory integrals related to Radon-like transforms, J. Fourier Anal. Appl., Kahane special issue (1995), 535–551.Google Scholar
  24. 24.
    E. Stein, S. Wainger, Problems in harmonic analysis related to curvature, Bull. Am. Math. Soc., 84 (1978), 1239–1295.Google Scholar
  25. 25.
    C. Thiele, Singular integrals meet modulation invariance survey article, Proceedings of ICM 2002, Higher Education Press, Beijing, 2002, vol. II, 721–732.Google Scholar
  26. 26.
    S. Wainger, Special trigonometric series in k dimensions, Mem. Am. Math Soc., 59 (1965), AMS.Google Scholar
  27. 27.
    M. Zielinski, Highly oscillatory integrals along curves, Ph.D. Thesis, University of Wisconsin, Madison, (1985).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Wisconsin-Milwaukee & Huazhong Normal UniversityMilwaukeeUSA
  2. 2.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations