, Volume 13, Issue 1, pp 61–87 | Cite as

Vector measures: where are their integrals?

  • Guillermo P. CurberaEmail author
  • Olvido Delgado
  • Werner J. Ricker


Let ν be a vector measure with values in a Banach space Z. The integration map \(I_\nu: L^1(\nu)\to Z\), given by \(f\mapsto \int f\,d\nu\) for fL1(ν), always has a formal extension to its bidual operator \(I_\nu^{**}: L^1(\nu)^{**}\to Z^{**}\). So, we may consider the “integral” of any element f** of L1(ν)** as I ν ** (f**). Our aim is to identify when these integrals lie in more tractable subspaces Y of Z**. For Z a Banach function space X, we consider this question when Y is any one of the subspaces of X** given by the corresponding identifications of X, X′′ (the Köthe bidual of X) and X* (the topological dual of the Köthe dual of X). Also, we consider certain kernel operators T and study the extended operator I ν ** for the particular vector measure ν defined by ν(A) := T A ).

Mathematics Subject Classification (2000)

Primary 46G10, 47B38 Secondary 46B42, 47G10 


Banach lattices and function spaces vector measure integration map Duality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.G. Bartle, N. Dunford, J. Schwartz, Weak compactness and vector measures, Canad. J. Math., 7 (1955), 289–305.Google Scholar
  2. 2.
    C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston (1988).Google Scholar
  3. 3.
    G.P. Curbera, Operators into L 1 of a vector measure and applications to Banach lattices, Math. Ann., 293 (1992), 317–330.Google Scholar
  4. 4.
    G.P. Curbera, When L 1 of a vector measure is an AL–space, Pac. J. Math., 162 (1994), 287–303.Google Scholar
  5. 5.
    G.P. Curbera, Banach space properties of L 1 of a vector measure, Proc. Am. Math. Soc., 123 (1995), 3797–3806.Google Scholar
  6. 6.
    G.P. Curbera, Volterra convolution operators with values in rearrangement invariant spaces, J. Lond. Math. Soc., 60 (1999), 258–268.Google Scholar
  7. 7.
    G.P. Curbera, W.J. Ricker, Optimal domains for kernel operators via interpolation, Math. Nachr., 244 (2002), 47–63.Google Scholar
  8. 8.
    G.P. Curbera, W.J. Ricker, Optimal domain for the kernel operator associated with Sobolev’s inequality, Studia Math., 158 (2003), 131–152 (and 170 (2005), 217–218).Google Scholar
  9. 9.
    G.P. Curbera, W.J. Ricker, Banach lattices with the Fatou property and optimal domains of kernel operators, Indag. Math., (New Series) 17 (2006), 187–204.Google Scholar
  10. 10.
    G.P. Curbera, W.J. Ricker, Vector measures, integration and applications, In: K. Boulabiar, G. Buskes, and A. Triki (eds) Positivity, Trends in Mathematics, Birkhäuser, Basel–Berlin–Boston, (2007), 127–160.Google Scholar
  11. 11.
    G.P. Curbera, W.J. Ricker, Function spaces arising from kernel operators, (preprint).Google Scholar
  12. 12.
    O. Delgado, Banach function subspaces of L 1 of a vector measure and related Orlicz spaces, Indag. Math., (New Series) 15 (2004), 485–495.Google Scholar
  13. 13.
    O. Delgado, L 1 –spaces of vector measures defined on δ–rings, Arch. Math., 84 (2005), 432–443.Google Scholar
  14. 14.
    O. Delgado, Optimal domains for kernel operators on [0, ∞) × [0, ∞), Studia Math., 174 (2006), 131–145.Google Scholar
  15. 15.
    O. Delgado, J. Soria, Optimal domain for the Hardy operator, J. Funct. Anal., 244 (2007), 119–133.Google Scholar
  16. 16.
    J. Diestel, J.J. Uhl Jr, Vector Measures, American Mathematical Society Surveys 15, Providence, R.I., (1977).Google Scholar
  17. 17.
    N. Dunford, J.T. Schwartz, Linear Operators I: General Theory, Wiley Interscience, New York (1964).Google Scholar
  18. 18.
    S.G. Krein, Ju.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, American Mathematical Society, Providence, R.I., (1982).Google Scholar
  19. 19.
    D.R. Lewis, Integration with respect to vector measures, Pac. J. Math., 33 (1970), 157–165.Google Scholar
  20. 20.
    D.R. Lewis, On integrability and summability in vector spaces, Illinois J. Math., 16 (1972), 294–307.Google Scholar
  21. 21.
    J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin, (1979).Google Scholar
  22. 22.
    W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces I, North Holland, Amsterdam, (1971).Google Scholar
  23. 23.
    P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin-Heidelberg-New York, (1991).Google Scholar
  24. 24.
    G. Mockenhaupt, W.J. Ricker, Optimal extension of the Hausdorff-Young inequality, J. Reine Angew. Math., (2008, in press).Google Scholar
  25. 25.
    S. Okada, The dual space of L 1 (μ) for a vector measure μ, J. Math. Anal. Appl., 177 (1993), 583–599.Google Scholar
  26. 26.
    S. Okada, W.J. Ricker, Non-weak compactness of the integration map for vector measures, J. Austral. Math. Soc., (Series A) 54 (1993), 287–303.Google Scholar
  27. 27.
    S. Okada, W.J. Ricker, Optimal domains and integral representations of convolution operators in L p(G), Integral Equ. Oper. Theory, 48 (2004), 525–546.Google Scholar
  28. 28.
    S. Okada, W.J. Ricker, L. Rodríguez-Piazza, Compactness of the integration operator associated with a vector measure, Studia Math., 150 (2002), 133–149.Google Scholar
  29. 29.
    S. Okada, W.J. Ricker, E.A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators acting in Function Spaces, Operator Theory: Advances in Applications Birkhäuser Verlag, Basel–Berlin–Boston (2008).Google Scholar
  30. 30.
    G.F. Stefansson, L 1 of a vector measure, Matematiche 48 (1993), 219–234.Google Scholar
  31. 31.
    A.C. Zaanen, Integration, 2nd rev. edn. North Holland, Amsterdam; Interscience, New York Berlin (1967).Google Scholar
  32. 32.
    A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Guillermo P. Curbera
    • 1
    Email author
  • Olvido Delgado
    • 2
  • Werner J. Ricker
    • 3
  1. 1.Facultad de MatemáticasUniversidad de SevillaSevillaSpain
  2. 2.Instituto Universitario de Matemática Pura y AplicadaUniversidad Politécnica de ValenciaValenciaSpain
  3. 3.Math.-Geogr. FakultätKatholische Universität Eichstätt-IngolstadtEichstättGermany

Personalised recommendations