, Volume 12, Issue 3, pp 407–420 | Cite as

Increasing functions and inverse Santaló inequality for unconditional functions

  • Matthieu FradeliziEmail author
  • Mathieu Meyer


Let \(\phi: {\mathbb{R}}^n\to {\mathbb{R}}\cup\{+\infty\}\) be a convex function and \(\mathcal{L}\phi\) be its Legendre tranform. It is proved that if \(\phi\) is invariant by changes of signs, then \(\int e^{-\phi}\int e^{-\mathcal{L}\phi} \ge 4^n\). This is a functional version of the inverse Santaló inequality for unconditional convex bodies due to J. Saint Raymond. The proof involves a general result on increasing functions on \(\mathbb{R}^{n} \times \mathbb{R}^n\) together with a functional form of Lozanovskii’s lemma. In the last section, we prove that for some c > 0, one has always \(\int e^{-\phi}\int e^{-\mathcal{L}\phi} \ge c^n\). This generalizes a result of B. Klartag and V. Milman.

Mathematics Subject Classification (2000)

Primary: 52A40 26B25 39B62 


Increasing functions Legendre transform inverse-Santaló inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Artstein, M. Klartag, V. Milman, The Santaló point of a function and a functional form of Santaló inequality, Mathematika, 51 (2004), 33–48.Google Scholar
  2. 2.
    K. Ball, Isometric problems in ℓ p and sections of convex sets, Ph.D Dissertation, Cambridge (1986).Google Scholar
  3. 3.
    W. Blaschke, Über affine Geometrie 7: Neue Extremeigenschaften von Ellipse und Ellipsoid, Wilhelm Blaschke Gesammelte Werke 3, Thales Verlag, Essen (1985), pp. 246–258.Google Scholar
  4. 4.
    B. Bollobás, I. Leader, Products of unconditional bodies, Oper. Theory Adv. Appl., 77 (1995), 13–24.Google Scholar
  5. 5.
    B. Bollobás, I. Leader, A.J. Radcliffe, Reverse Kleitman inequalities, Proc. Lond. Math. Soc. 58 (3) (1989), 153–168.Google Scholar
  6. 6.
    J. Bourgain, V.D. Milman, New volume ratio properties for convex symmetric bodies in R n, Invent. Math., 88(2) (1987), 319–340.Google Scholar
  7. 7.
    M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math., 69(6) (1997), 515–522.Google Scholar
  8. 8.
    M. Fradelizi, M. Meyer, Some functional forms of Blaschke-Santaló inequality, Math. Z., 256 (2007), 379–395.Google Scholar
  9. 9.
    M. Fradelizi, M. Meyer, Some functional form of inverse Santaló inequality (in preparation).Google Scholar
  10. 10.
    B. Klartag, V. Milman, Geometry of log-concave functions and measures, Geom. Dedic., 112 (2005), 169–182.Google Scholar
  11. 11.
    G. Ya. Lozanovskii, On some Banach lattices, Siberian, Math. J., 10 (1969), 419–430.Google Scholar
  12. 12.
    K. Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fys., 68 (1939), 93–102.Google Scholar
  13. 13.
    M. Meyer, Une caractérisation volumique de certains espaces normés de dimension finie, Isr. J. Math., 55(3) (1986), 317–326.Google Scholar
  14. 14.
    J. Saint Raymond, Sur le volume des corps convexes symétriques. Séminaire d’Initiation à l’Analyse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris (1981).Google Scholar
  15. 15.
    S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis, J. Lond. Math. Soc., 36 (1987), 126–136.Google Scholar
  16. 16.
    L.A. Santaló, An affine invariant for convex bodies of n-dimensional space. Port. Math. 8, (1949), 155–161.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Université de Marne la Vallée, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)Marne la Vallée Cedex 2France

Personalised recommendations