, Volume 9, Issue 2, pp 259–264

Subadditivity Inequalities in von Neumann Algebras and Characterization of Tracial Functionals



We examine under which assumptions on a positive normal functional φ on a von Neumann algebra, \({\cal M}\) and a Borel measurable function f: R+R with f(0) = 0 the subadditivity inequality φ (f(A+B)) ≤ φ(f(A))+φ (f (B)) holds true for all positive operators A, B in \({\cal M}\). A corresponding characterization of tracial functionals among positive normal functionals on a von Neumann algebra is presented.


algebra of matrices functional calculus positive normal functional subadditivity inequality tracial functional von Neumann algebra 

2000 Mathematics Subject classification

46L30 15A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Research Institute of Mathematics and MechanicsKazan State UniversityKazanRussia

Personalised recommendations