, Volume 10, Issue 3, pp 539–554 | Cite as

Mixed Norm and Multidimensional Lorentz Spaces

  • Sorina Barza
  • Anna Kamińska
  • Lars-Erik Persson
  • Javier Soria


In the last decade, the problem of characterizing the normability of the weighted Lorentz spaces has been completely solved ([16], [7]). However, the question for multidimensional Lorentz spaces is still open. In this paper, we consider weights of product type, and give necessary and sufficient conditions for the Lorentz spaces, defined with respect to the two-dimensional decreasing rearrangement, to be normable. To this end, it is also useful to study the mixed norm Lorentz spaces. Finally, we prove embeddings between all the classical, multidimensional, and mixed norm Lorentz spaces.

Mathematics Subject Classification (2000)

46E30 46B25 


Function spaces Lorentz spaces mixed norm spaces rearrangement weighted inequalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Ariño, B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.Google Scholar
  2. 2.
    S. Barza, L.E. Persson, J. Soria, Multidimensional rearrangement and Lorentz spaces, Acta Math. Hungar. 104 (2004), 203–228.Google Scholar
  3. 3.
    S. Barza, L.E. Persson, J. Soria, Sharp weighted multidimensional integral inequalities for monotone functions, Math. Nachr. 210 (2000), 43–58.Google Scholar
  4. 4.
    S. Barza, L.E. Persson, V. Stepanov, On weighted multidimensional embeddings for monotone functions, Math. Scand. 88 (2001), 303–319.Google Scholar
  5. 5.
    C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988.Google Scholar
  6. 6.
    A.P. Blozinski, Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc. 263 (1981), 149–167.Google Scholar
  7. 7.
    M.J. Carro, A. García del Amo, J. Soria, Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc. 124 (1996), 849–857.Google Scholar
  8. 8.
    M.J. Carro, J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), 480–494.Google Scholar
  9. 9.
    M. Cwikel, A. Kamińska, L. Maligranda, L. Pick, Are generalized Lorentz ``spaces" really spaces?, Proc. Amer. Math. Soc. 132 (2004), 3615–3625.Google Scholar
  10. 10.
    J.L. Garcia-Domingo, Embeddings for monotone functions and Bp weights, between discrete and continuous, To appear in Math. Scand.Google Scholar
  11. 11.
    A. Haaker, On the conjugate space of Lorentz space, Technical Report, Lund University, 1970.Google Scholar
  12. 12.
    A. Kamińska, L. Maligranda, Order convexity and concavity in Lorentz spaces Λp,w, Studia Math 160 (2004), 267–286.Google Scholar
  13. 13.
    S.G. Krein, Yu. Ī. Petunīn, E.M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, 1982.Google Scholar
  14. 14.
    A. Kufner, L.E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co, Singapore/New York/London/Hong Kong, 2003.Google Scholar
  15. 15.
    G.G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37–55.Google Scholar
  16. 16.
    E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158.Google Scholar
  17. 17.
    A.A. Yatsenko, Iterative rearrangements of functions and the Lorentz spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 1998, no. 5, 73–77; translation in Russian Math. (Iz. VUZ) 42 (1998), no. 5, 71–75.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  • Sorina Barza
    • 1
  • Anna Kamińska
    • 2
  • Lars-Erik Persson
    • 3
  • Javier Soria
    • 4
  1. 1.Dept. of Mathematics, Physics and Eng. SciencesKarlstad UniversityKarlstadSweden
  2. 2.Dept. of Mathematical SciencesThe University of MemphisMemphisUSA
  3. 3.Dept. of MathematicsLuleå University of TechnologyLuleåSweden
  4. 4.Dept. Appl. Math. and AnalysisUniversity of BarcelonaBarcelonaSpain

Personalised recommendations