Positivity

, Volume 9, Issue 3, pp 511–539 | Cite as

Nuclear and Full Nuclear Cones in Product Spaces: Pareto Efficiency and an Ekeland Type Variational Principle

  • G. Isac
  • CHR. Tammer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attouch, H., Riahi, H. 1993Stability results for Ekeland’s ε-variational principle and cone extremal solutionsMath. Oper. Res.18173201Google Scholar
  2. 2.
    Bahya A.O. Ensembles côniquement bornés et cônes nucléaires dans les espaces localement convexes séparés. These (Docteur de 3-ème cycle), Ecole Normale Supérieure, Takaddoum, Rabat, Maroc (Morocco), 1989.Google Scholar
  3. 3.
    Bahya, A.O. 1992Etude des cônes nucléaireAnn. Sci. Math. Qué bec15123134Google Scholar
  4. 4.
    Bahya A.O. Etude des cônes nucléaires dans les espaces localement convexes séparés, Thèse de Docteur d’Etat, Faculté des Sciences de Rabat, Maroc (Morocco), 1997.Google Scholar
  5. 5.
    Blum, E., Oettli, W. 1975Mathematische OptimierungSpringer-VerlagHeidelbergGoogle Scholar
  6. 6.
    Borwein, J. 1982Continuity and differentiability properties of convex operatorsProc. London Math. Soc.44420444Google Scholar
  7. 7.
    Borwein, J. 1983On the existence of Pareto efficient pointsMath. Oper. Res.86875Google Scholar
  8. 8.
    Cammaroto, F., Chinni, A. 1996A complement to Ekeland’s variational principle in Banach spacesBull. Polish Acad. Sci. Math.442933Google Scholar
  9. 9.
    Cammaroto F., Chinni A., Sturiale G.: A complement to Ekeland’s variational principle for vector-valued functions, (Preprint, University of Messina).Google Scholar
  10. 10.
    Cammaroto F., Chinni A. and Sturiale G.: A remark on Ekeland’s principle in locally convex topological vector spaces, (Preprint, University of Messina).Google Scholar
  11. 11.
    Chen, G.Y., Cheng, G.M. 1986

    vector variational inequality and vector optimization

    Sawaragi, Y.Inoue, K.Nakayama, H eds. Interactive and Intelligent Decision Support Systems, Vol I, Proceedings 1986. Lecture Notes in Econ. and Math. Syst. 285Springer-VerlagBerlin Heidelberg, New York
    Google Scholar
  12. 12.
    Chen, G.Y., Craven, B.D. 1990A vector variational inequality and optimization over an efficient setZOR-Meth. Model Oper. Res.34112CrossRefGoogle Scholar
  13. 13.
    Chen, G.Y., Huang, X.X. 1998A unified approach to the existing three types of variational principles for vector valued functionsMath. Meth. Oper. Res.48349357CrossRefGoogle Scholar
  14. 14.
    Chen, G.Y., Huang, X.X., Han, S.H. 2000General Ekeland’s variational principle for set-valued mappingsJ. Opt. Theory Appl.106151164CrossRefGoogle Scholar
  15. 15.
    Figueiredo, D.G. 1989The Ekeland’s variational principle with applications and detoursTata Institute of Fundamental ResearchBombayGoogle Scholar
  16. 16.
    Ekeland, I. 1972Sur les problemes variationnelsC. R. Acad. Sci. Paris275A10571059Google Scholar
  17. 17.
    Ekeland, I. 1974On some variational principleJ. Math. Anal. Appl.47324354CrossRefGoogle Scholar
  18. 18.
    Ekeland, I. 1979Nonconvex minimization problemsBull. Amer. Math. Soc.1443474Google Scholar
  19. 19.
    Ekeland, I. 1983Some lemmas about dynamical systemsMath. Scand.52262268Google Scholar
  20. 20.
    Ekeland, I.: The ε-variational principle revised, (Notes by S. Terracini), Methods of Noncovex Analysis A. Cellina (ed.) Lecture Notes in Math. Springer-Verlag, 1446 (1990), pp. 1–15.Google Scholar
  21. 21.
    Fang, J.X. 1996The variational principle and fixed point theorems in certain topological spacesJ. Math. Anal. Appl.208389412Google Scholar
  22. 22.
    Georgiev, P.G. 1988The strong Ekeland variational principle, the strong drop theorem and applicationsJ. Math. Anal. Appl.131121CrossRefGoogle Scholar
  23. 23.
    Gerth (Tammer), Chr., Weidner, P. 1990Nonconvex separation theorems and some applications in vector optimizationJ. Opt. Theory Appl.67297320CrossRefGoogle Scholar
  24. 24.
    Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems, in: R.W. Cottle, F. Giannessi, J.L Lions, (eds). Variational Inequality and Complementarity Problems, J. Wiley and Sons, 1980 pp. 151–186.Google Scholar
  25. 25.
    Göpfert, A., Tammer, Chr. 1995A new maximal point theorem, ZAnal. Anwendungen.14379390Google Scholar
  26. 26.
    Göpfert, A., Tammer, Chr. 1999

    Maximal point theorems in product spaces and applications for multicriteria approximation problems

    Haimes, Y.Y.Stener, R.E eds. Research and Practice in Multiple Criteria Decision Making. Lecture Notes in Econ. and Math. Systems 487SpringerBerlin Heidelberg93104
    Google Scholar
  27. 27.
    Göpfert, A., Tammer, Chr., Zălinescu, C. 2000On the vectorial Ekeland’s variational principle and minimal points in product spacesNonlinear Anal39909922CrossRefGoogle Scholar
  28. 28.
    Göpfert, A., Tammer, Chr., Zălinescu, C. 1999A new maximal point theorem in product spacesZAA18767770Google Scholar
  29. 29.
    Hyers, D. H. Isac, G. and Rassias, Th. M.: Topics in nonlinear analysis and applications, World Scientific (1997).Google Scholar
  30. 30.
    Isac, G.: Cônes localement borné et cônes completement reguliers. Applications à l’Analyse Nonlinéaire, Séminaire D’Analyse Moderne, Université de Sherbrooke, 17 (1980).Google Scholar
  31. 31.
    Isac, G. 1983Sur l’existence de l’optimum de ParetoRiv. Mat. Univ. Parma4303325Google Scholar
  32. 32.
    Isac, G. 1983Un critère de sommabilité dans les espaces localement convexes ordonnes: Cônes nucléairesMathematica 25(48)2159169Google Scholar
  33. 33.
    Isac, G. 1987Supernormal cone and fixed point theoryRocky Mountain J. Math.17219226Google Scholar
  34. 34.
    Isac, G.: The Ekeland’s principle and the Pareto ε-efficiency, In: M. Tamiz (ed) Multiobjective Programming and Goal Programming. Theory and Applications, Lecture Notes in Economics and Mathematical Systems, Vol. 432, Springer-Verlag, 1996, 148–163.Google Scholar
  35. 35.
    Isac, G. 1997Ekeland’s principle and nuclear cones: a geometrical aspectMath. Comput. Modeling26111116CrossRefGoogle Scholar
  36. 36.
    Isac G.: On Pareto efficiency. A general constructive existence principle, To appear in the volume: Combinatorial and Global Optimization (eds), P.M. Pardalos, A. Migdalas and R. Burkard, Kluwer Academic Publishers, 133–144.Google Scholar
  37. 37.
    Isac, G., Bahya, A.O. 2002Full nuclear cones associated to a normal cone. Application to Pareto efficiencyAppl Math. Lett.15633639CrossRefGoogle Scholar
  38. 38.
    Jahn, J. 1986Mathematical Vector Optimization in Partially Ordered SpacesLang Verlag FrankfurtBern, New YorkGoogle Scholar
  39. 39.
    Khanh, P.Q.: On Caristi-Kirk’s Theorem and Ekeland’s variational principle for Pareto extrema, Preprint 357, Institute of Mathematics, Polish Academy of Sciences, 1986.Google Scholar
  40. 40.
    Mancino, O.G., Stampacchia, G. 1972Convex programming and variational inequalitiesJ. Opt. Theory Appl.9323CrossRefGoogle Scholar
  41. 41.
    Nemeth, A. 1986A nonconvex vector minimization problemNonlinear Anal. Theory, Meth. Appl.10669678Google Scholar
  42. 42.
    Nemeth, A.: Ekeland’s variational principle in ordered abelian groups, forthcoming: Nonlinear Anal. Forum.Google Scholar
  43. 43.
    Oettli, W.: Approximate solutions of variational inequalities. In: H. Albach, E. Helmstädter, and R. Henn (eds) Quantitative Wirtschaftsforschung, Verlag J. C. B. Mohr, Tübingen 1977, 535–538.Google Scholar
  44. 44.
    Oettli, W., Thera, M. 1993Equivalents of Ekeland’s principleBull. Austral. Math. Soc.48385392Google Scholar
  45. 45.
    Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability (2nd ed.), Lecture Notes Math. 1364, Springer-Verlag, 1993.Google Scholar
  46. 46.
    Pontini, C. 1990Inclusion theorems for non-explosive and strongly exposed cones in normed spacesJ. Math. Anal. Appl148275286CrossRefGoogle Scholar
  47. 47.
    Tammer, Chr.: Existence results and necessary conditions for ε-efficient elements, In: B. Brosowski, J. Ester, S. Helbig and R. Nehse Multicriteria Decision Frankfurt am Main: Verlag P. Lang, 1993, pp. 97–109.Google Scholar
  48. 48.
    Tammer, Chr. 1992A generalization of Ekeland’s variational principleOptimization25129141Google Scholar
  49. 49.
    Treves, F. 1967Locally Convex Spaces and Linear Partial Differential EquationsSpringer-VerlagNew-YorkGoogle Scholar
  50. 50.
    Truong, X.D.H. 1994On the existence of efficient points in locally convex spacesJ. Global Opt.4265278CrossRefGoogle Scholar
  51. 51.
    Truong, X.D.H. 1994A note on a class of cones ensuring the existence of efficient points in bounded complete setsOptimization31141152Google Scholar
  52. 52.
    Truong, X. D. H.: Existence and density results for proper efficiency in cone compact sets (Preprint, Hanoi Institute of Mathematics), 1999.Google Scholar
  53. 53.
    Turinici, M. 1994Vector extensions of the variational Ekeland’s resultAnn. St. Univ. Al. I. Cuza, Iasi, Tom XL, MatematicaF-3225266Google Scholar
  54. 54.
    Yang, X.Y. 1993Vector variational inequality and its dualityNonlinear Anal. Theory Meth. Appl.21869877CrossRefGoogle Scholar
  55. 55.
    Yang, X.Q., Chen, G.Y. 2000

    On inverse vector variational inequalities

    Giannessi, F. eds. Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Nonconvex Optimization and its ApplicationsKluwer Academic PublishersDordrecht433446
    Google Scholar
  56. 56.
    Yang, X.Q., Goh, C.J. 1997On vector variational inequalities: application to vector equilibriaJ. Opt. Theory Appl.95431443CrossRefGoogle Scholar
  57. 57.
    Yang, X.Q., Goh, C.J. 2000

    Vector Variational Inequalities, Vector Equilibrium Flow and Vector Optimization

    Giannessi, F. eds. Vector Variational Inequalities and Vector Equilibria, Mathematical Theories, Nonconvex Optimization and its ApplicationsKluwer Academic PublishersDordrecht447465
    Google Scholar
  58. 58.
    Zhu, J., Isac, G. and Zhao, D.: Pareto optimization in topological vector spaces, (Preprint, 2001).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • G. Isac
    • 1
  • CHR. Tammer
    • 2
  1. 1.Department of MathematicsRoyal Military College of Canada, STN; FORCESKingstonCanada
  2. 2.Fachbereich Mathematik und Informatik, Institut Für Optimierung und StochastikMartin-Luther-UniversitätHalleGermany

Personalised recommendations