Advertisement

Robo-Taxi service fleet sizing: assessing the impact of user trust and willingness-to-use

  • Reza VosooghiEmail author
  • Joseph Kamel
  • Jakob Puchinger
  • Vincent Leblond
  • Marija Jankovic
Article

Abstract

The first commercial fleets of Robo-Taxis will be on the road soon. Today important efforts are made to anticipate future Robo-Taxi services. Fleet size is one of the key parameters considered in the planning phase of service design and configuration. Based on multi-agent approaches, the fleet size can be explored using dynamic demand response simulations. Time and cost are the most common variables considered in such simulation approaches. However, personal taste variation can affect the demand and consequently the required fleet size. In this paper, we explore the impact of user trust and willingness-to-use on the Robo-Taxi fleet size. This research is based upon simulating the transportation system of the Rouen-Normandie metropolitan area in France using MATSim, a multi-agent activity-based simulator. A local survey is made in order to explore the variation of user trust and their willingness-to-use future Robo-Taxis according to the sociodemographic attributes. Integrating survey data in the model shows the significant importance of traveler trust and willingness-to-use varying the Robo-Taxi use and the required fleet size.

Keywords

Multi-agent simulation Shared autonomous vehicle Robo-Taxi Willingness-to-use User trust Fleet size 

Notes

Acknowledgements

This research work has been carried out in the framework of IRT SystemX, Paris-Saclay, France, and therefore granted with public funds within the scope of the French Program “Investissements d’Avenir”. The authors would like to thank Groupe Renault for partially financing this work and Métropole Rouen-Normandie for providing the data.

Author contribution

The authors confirm contribution to the paper as follows: study conception and design: R. Vosooghi, J. Puchinger, M. Jankovic; transport survey and data collection: Groupe Renault, Métropole Rouen Normandie; user survey: R. Vosooghi, J. Puchinger and other contributors; analysis and interpretation of results: R. Vosooghi, J. Kamel, J. Puchinger, V. Leblond; draft manuscript preparation: R. Vosooghi. All authors reviewed the results and approved the final version of the manuscript.

References

  1. Al-Maghraoui, O.: Designing for Urban Mobility - Modeling the Traveler Experience. Interfaces, Université Paris Saclay (2019)Google Scholar
  2. Bansal, P., Kockelman, K.M., Singh, A.: Assessing public opinions of and interest in new vehicle technologies: an Austin perspective. Transp. Res. C Emerg. Technol. 67, 1–14 (2016).  https://doi.org/10.1016/j.trc.2016.01.019 CrossRefGoogle Scholar
  3. Chan, N.D., Shaheen, S.A.: Ridesharing in North America: past, present, and future. Transp. Rev. 32, 93–112 (2012).  https://doi.org/10.1080/01441647.2011.621557 CrossRefGoogle Scholar
  4. Charypar, D., Nagel, K.: Generating complete all-day activity plans with genetic algorithms. Transportation (Amst) 32, 369–397 (2005).  https://doi.org/10.1007/s11116-004-8287-y CrossRefGoogle Scholar
  5. Fagnant, D.J., Kockelman, K.M.: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas. Transportation (Amst) 45, 143–158 (2018).  https://doi.org/10.1007/s11116-016-9729-z CrossRefGoogle Scholar
  6. Firnkorn, J., Müller, M.: Selling mobility instead of cars: new business strategies of automakers and the impact on private vehicle holding. Bus. Strategy Environ. 21, 264–280 (2012).  https://doi.org/10.1002/bse.738 CrossRefGoogle Scholar
  7. Haboucha, C.J., Ishaq, R., Shiftan, Y.: User preferences regarding autonomous vehicles. Transp. Res. C Emerg. Technol. 78, 37–49 (2017).  https://doi.org/10.1016/j.trc.2017.01.010 CrossRefGoogle Scholar
  8. Hörl, S.: Agent-based simulation of autonomous taxi services with dynamic demand responses. Procedia Comput. Sci. 109, 899–904 (2017).  https://doi.org/10.1016/j.procs.2017.05.418 CrossRefGoogle Scholar
  9. Hörl, S., Erath, A., Axhausen, K.W.: Simulation of autonomous taxis in a multi-modal traffic scenario with dynamic demand. Arbeitsberichte Verkehrs- und Raumplan (2016).  https://doi.org/10.3929/ethz-b-000118794 Google Scholar
  10. Hörl, S., Balac, M., Axhausen, K.W.: A first look at bridging discrete choice modeling and agent-based microsimulation in MATSim. In: Procedia Computer Science, pp. 900–907 (2018)Google Scholar
  11. Kamel, J., Vosooghi, R., Puchinger, J.: Synthetic Population Generator for France (2018). https://github.com/josephkamel/SPGF2. Accessed 30 Aug 2018
  12. Kamel, J., Vosooghi, R., Puchinger, J., Ksontini, F., Sirin, G.: Exploring the impact of user preferences on shared autonomous vehicle modal split: a multi-agent simulation approach. Transp. Res. Procedia 37, 115–122 (2019).  https://doi.org/10.1016/j.trpro.2018.12.173 CrossRefGoogle Scholar
  13. Krueger, R., Rashidi, T.H., Rose, J.M.: Preferences for shared autonomous vehicles. Transp. Res. C Emerg. Technol. 69, 343–355 (2016).  https://doi.org/10.1016/j.trc.2016.06.015 CrossRefGoogle Scholar
  14. Maciejewski, M.: Dynamic transport services. In: Horni, A., Nagel, K., Axhausen, K.W. (eds.) The Multi-agent Transport Simulation MATSim, pp. 145–152. Ubiquity Press, London (2016).  https://doi.org/10.5334/baw CrossRefGoogle Scholar
  15. Martinez, L.M., Viegas, J.M.: Assessing the impacts of deploying a shared self-driving urban mobility system: an agent-based model applied to the city of Lisbon, Portugal. Int. J. Transp. Sci. Technol. 6, 13–27 (2017).  https://doi.org/10.1016/j.ijtst.2017.05.005 CrossRefGoogle Scholar
  16. MATSim: Multi-Agent Transport Simulation (2012). http://matsim.org/. Accessed 30 Oct 2018
  17. Shaheen, S., Cohen, A., Zohdy, I.: Shared Mobility: Current Practices and Guiding Principles. Washington, DC (2016)Google Scholar
  18. Shaheen, S., Sperling, D., Wagner, C.: Carsharing in Europe and North America: past, present, and future. Transp. Q. 52, 35–52 (1998).  https://doi.org/10.1068/a201285 Google Scholar
  19. Shaheen, S.A., Chan, N.D., Micheaux, H.: One-way carsharing’s evolution and operator perspectives from the Americas. Transportation (Amst) 42, 519–536 (2015).  https://doi.org/10.1007/s11116-015-9607-0 CrossRefGoogle Scholar
  20. Steck, F., Kolarova, V., Bahamonde-Birke, F., Trommer, S., Lenz, B.: How autonomous driving may affect the value of travel time savings for commuting. Transp. Res. Rec. J. Transp. Res. Board. (2018).  https://doi.org/10.1177/0361198118757980 Google Scholar
  21. Stocker, A., Shaheen, S.: Shared automated mobility: early exploration and potential impacts. Road Veh. Autom. 4, 125–139 (2018).  https://doi.org/10.1007/978-3-319-60934-8_12 CrossRefGoogle Scholar
  22. Vinet, L., Zhedanov, A.: A ‘missing’ family of classical orthogonal polynomials. J. Phys. A Math. Theor. 44, 085201 (2011).  https://doi.org/10.1088/1751-8113/44/8/085201 CrossRefGoogle Scholar
  23. Vosooghi, R., Puchinger, J., Jankovic, M., Sirin, G.: A critical analysis of travel demand estimation for new one-way carsharing systems. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). pp. 199–205. IEEE (2017).  https://doi.org/10.1109/ITSC.2017.8317917
  24. Wang, B., Ordonez Medina, S.A., Fourie, P.: Simulation of autonomous transit on demand for fleet size and deployment strategy optimization. Procedia Comput. Sci. 130, 797–802 (2018).  https://doi.org/10.1016/J.PROCS.2018.04.138 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Génie Industriel, CentraleSupelécUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Institut de Recherche Technologique SystemXPalaiseauFrance

Personalised recommendations