Advertisement

Transportation

, Volume 46, Issue 5, pp 1893–1913 | Cite as

A fractional perspective to the modelling of Lisbon’s public transportation network

  • António Dinis F. Santos
  • Duarte ValérioEmail author
  • J. A. Tenreiro Machado
  • António M. Lopes
Article
  • 182 Downloads

Abstract

Urban growth originates multiscale spatial patterns, such as those of transportation networks. Here, the public transportation network (PTN) of the city of Lisbon is analysed from 1901 to 2015, employing several mathematical tools. In a first stage, the fractal dimension and the fractional entropy are used to quantify the evolution of the structure of the PTN in space and time. In a second stage, the PTN is analysed adopting additional information, namely considering different levels of the network based on transportation schedule and passenger capacity, and studying the significance of the distance between stops. Both the fractal dimension and the fractional entropy reveal time patterns compatible with known historical events, showing them to be appropriate for quantifying the growth of the PTN. When the routes’ schedules are used to stratify the PTN, not only the fractal behaviour is observed at different levels, but also the evolution of the network in respect to the homogenization of the capacity of different routes. Finally, when the distance between consecutive stops is analysed, a power law behaviour is revealed, as expected from the fractal geometry of the network. This result is then confirmed using the ht-index.

Keywords

Public transportation network Fractal dimension Entropy Lisbon 

Notes

Acknowledgements

This work was supported by FCT, through IDMEC, under LAETA, Project UID/EMS/50022/2013.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Batty, M.: Building a science of cities. Cities 29, S9–S16 (2012)Google Scholar
  2. Batty, M., Kim, K.: Form follows function: reformulating urban population density functions. Urb. Stud. 29(7), 1043–1070 (1992)Google Scholar
  3. Batty, M., Longley, P.A.: Fractal Cities: A Geometry of Form and Function. Academic Press, London (1994)Google Scholar
  4. Benguigui, L.: The fractal dimension of some railway networks. J. Phys. Fr. 2(4), 385–388 (1992)Google Scholar
  5. Benguigui, L.: A fractal analysis of the public transportation system of Paris. Environ. Plan. A 27(7), 1147–1161 (1995)Google Scholar
  6. Benguigui, L., Daoud, M.: Is the suburban railway system a fractal? Geogr. Anal. 23(4), 362–368 (1991)Google Scholar
  7. Berry, M.V.: Diffractals. J. Phys. A Math. Gen. 12(6), 781–798 (1979)Google Scholar
  8. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C., Nes, J.G.G., Romance, M., Nadal, I.S., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)Google Scholar
  9. Borak, S., Härdle, W., Weron, R.: Stable Distributions. Springer, Berlin (2005)Google Scholar
  10. Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis functions for medical imaging. IEEE Trans. Med. Imaging 16(1), 96–107 (1997)Google Scholar
  11. Carris: História da Carris. http://carris.transporteslisboa.pt/pt/historia/. Accessed in February (2016)
  12. Chechkin, A.V., Metzler, R., Klafter, J., Gonchar, V.Y.: Introduction to the theory of Lévy flights. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport: Foundations and Applications. Wiley, Hoboken (2008)Google Scholar
  13. Chen, Y.: Multi-scaling allometric analysis for urban and regional development. Phys. A Stat. Mech. Appl. 465, 673–689 (2017)Google Scholar
  14. Chen, Y., Jiang, S.: Modeling fractal structure of systems of cities using spatial correlation function. Int. J. Artif. Life Res. 1(1), 12–34 (2010)Google Scholar
  15. Chen, Y., Wang, J., Feng, J.: Understanding the fractal dimensions of urban forms through spatial entropy. Entropy 19(600), 1–18 (2017)Google Scholar
  16. Comboios de Portugal: Comboios de Portugal. https://pt.wikipedia.org/wiki/Comboios_de_Portugal. Accessed in February (2016)
  17. Cruz-Filipe, L.: História das carreiras da Carris. http://historiaccfl.webatu.com/. Accessed in February (2013)
  18. Direção-Geral do Território.: Carta administrativa oficial de portugal (CAOP). http://www.dgterritorio.pt/cartografia_e_geodesia/cartografia/carta_administrativa_oficial_de_portugal__caop_. Accessed in September (2017)
  19. Feng, J., Chen, Y.: Spatiotemporal evolution of urban form and land-use structure in Hangzhou, China: evidence from fractals. Environ. Plan. B Plan. Des. 37(5), 838–856 (2010)Google Scholar
  20. Fleckinger-Pelle, J., Lapidus, M.: Tambour fractal: Vers une résolution de la conjecture de Weyl–Berry pour les valeurs propres du Laplacien. C. R. Acad. Sci. Paris Ser. I Math. 306(4), 171–175 (1988)Google Scholar
  21. Frankhauser, P.: Aspects fractals des structures urbaines. Espace Geogr. 19(1), 45–69 (1990)Google Scholar
  22. Gao, P., Liu, Z., Xie, M., Tian, K., Liu, G.: CRG index: a more sensitive ht-index for enabling dynamic views of geographic features. Prof. Geogr. 68(4), 533–545 (2016)Google Scholar
  23. Jiang, B.: Head/tail breaks for visualization of city structure and dynamics. Cities 43, 69–77 (2015)Google Scholar
  24. Jiang, B., Ma, D.: How complex is a fractal? Head/tail breaks and fractional hierarchy. J. Geovis. Spatial Anal. 2(1), 6 (2018)Google Scholar
  25. Jiang, B., Yin, J.: Ht-index for quantifying the fractal or scaling structure of geographic features. Ann. Assoc. Am. Geogr. 104(3), 530–540 (2014)Google Scholar
  26. Kim, K.S., Benguigui, L., Marinov, M.: The fractal structure of Seoul’s public transportation system. Cities 20(1), 31–39 (2003)Google Scholar
  27. Koutrouvelis, I.A.: Regression-type estimation of the parameters of stable laws. J. Am. Stat. Assoc. 75(372), 918–928 (1980)Google Scholar
  28. Koutrouvelis, I.A.: An iterative procedure for the estimation of the parameters of stable laws. Commun. Stat. Simul. Comput. 10(1), 17–28 (1981)Google Scholar
  29. Lu, Y., Tang, J.: Fractal dimension of a transportation network and its relationship with urban growth: a study of the Dallas–Fort Worth area. Environ. Plan. B Plan. Des. 31(6), 895–911 (2004)Google Scholar
  30. Machado, J.A.T.: Fractional order generalized information. Entropy 16(4), 2350–2361 (2014)Google Scholar
  31. Maps, G.: Google Maps. https://www.google.pt/maps. Accessed in February (2016)
  32. Metropolitano, de Lisboa: Cronologia do Metro. http://metro.transporteslisboa.pt/empresa/um-pouco-de-historia/cronologia/. Accessed in February (2016)
  33. Rinaldo, A., Rodriguez-Iturbe, I., Rigon, R., Bras, R.L., Ijjasz-Vasquez, E., Marani, A.: Minimum energy and fractal structures of drainage networks. Water Resour. Res. 28(9), 2183–2195 (1992)Google Scholar
  34. Santos, A.D.F., Valério, D., Machado, J.A.T., Lopes, A.M.: Data for Santos, Valério, Tenreiro Machado, Mendes Lopes. https://docs.google.com/spreadsheets/d/e/2PACX-1vRSH4S-d1mJfgXei414Konib0PKirtYrfOSO586Q3bTmZwxZP4MIgBQmeJvjbiXg9Mb-mcmtp8LqHU6/pubhtml. Accessed in August (2018)
  35. Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Dover, New York (1991)Google Scholar
  36. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)Google Scholar
  37. Shen, G.: Fractal dimension and fractal growth of urbanized areas. Int. J. Geogr. Inf. Sci. 16(5), 419–437 (2002)Google Scholar
  38. Tannier, C., Thomas, I.: Defining and characterizing urban boundaries: a fractal analysis of theoretical cities and Belgian cities. Comput. Environ. Urban Syst. 41, 234–248 (2013)Google Scholar
  39. Tannier, C., Thomas, I., Vuidel, G., Frankhauser, P.: A fractal approach to identifying urban boundaries. Geogr. Anal. 43(2), 211–227 (2011)Google Scholar
  40. Thomas, I., Frankhauser, P.: Fractal dimensions of the built-up footprint: buildings versus roads. Fractal evidence from Antwerp (Belgium). Environ. Plan. B Plan. Des. 40(2), 310–329 (2013)Google Scholar
  41. Thomas, I., Frankhauser, P., Biernacki, C.: The morphology of built-up landscapes in Wallonia (Belgium): a classification using fractal indices. Landsc. Urban Plan. 84(2), 99–115 (2008)Google Scholar
  42. Ubriaco, M.R.: Entropies based on fractional calculus. Phys. Lett. A 373(30), 2516–2519 (2009)Google Scholar
  43. Valério, D., Lopes, A.M., Machado, J.A.T.: Entropy analysis of a railway network complexity. Entropy 18(11), 388 (2016)Google Scholar
  44. Veillette, M.: Alpha-stable distributions in MATLAB. http://math.bu.edu/people/mveillet/html/alphastablepub.html. Accessed in August (2016)
  45. von Ferber, C., Holovatch, Y.: Fractal transit networks: self-avoiding walks and Lévy flights. Eur. Phys. J. Spec. Top. 216(1), 49–55 (2013)Google Scholar
  46. Wang, H., Luo, S., Luo, T.: Fractal characteristics of urban surface transit and road networks: case study of Strasbourg, France. Adv. Mech. Eng. 9(2), 1–12 (2017)Google Scholar
  47. Zhuangzhi, S.: The study of fractal approach to measure urban rail transit network morphology. J. Transp. Syst. Eng. Inf. Technol. 7(1), 29 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of Electrical EngineeringInstitute of Engineering, Polytechnic of PortoPortoPortugal
  3. 3.Faculty of Engineering, UISPA - LAETA/INEGIUniversity of PortoPortoPortugal

Personalised recommendations