, Volume 45, Issue 2, pp 335–363 | Cite as

Assessing the representativeness of a smartphone-based household travel survey in Dar es Salaam, Tanzania

  • P. Christopher Zegras
  • Menghan Li
  • Talip Kilic
  • Nancy Lozano-Gracia
  • Ajinkya Ghorpade
  • Marco Tiberti
  • Ana I. Aguilera
  • Fang Zhao


The household travel survey (HTS) finds itself in the midst of rapid technological change. Traditional methods are increasingly being sidelined by digital devices and computational power—for tracking movements, automatically detecting modes and activities, facilitating data collection, etc.. Smartphones have recently emerged as the latest technological enhancement. FMS is a smartphone-based prompted-recall HTS platform, consisting of an app for sensor data collection, a backend for data processing and inference, and a user interface for verification of inferences (e.g., modes, activities, times, etc.). FMS, has been deployed in several cities of the global north, including Singapore. This paper assesses the first use of FMS in a city of the global south, Dar es Salaam. FMS in Dar was implemented over a 1-month period, among 581 adults chosen from 300 randomly selected households. Individuals were provided phones with data plans and the FMS app preloaded. Verification of the collected data occurred every 3 days, via a phone interview. The experiment reveals various social and technical challenges. Models of individual likelihood to participate suggest little bias. Several socioeconomic and demographic characteristics apparently do influence, however, the number of days fully verified per individual. Similar apparent biases emerge when predicting the likelihood of a given day being verified. Some risk of non-random, non-response is, thus, evident.


Household travel survey Smartphones Response rates and biases Dar es Salaam Tanzania 



The data collection for this research was supported by an award from the World Bank Group Big Data Innovation Challenge. Additional research support was provided by the Singapore National Research Foundation through the Singapore–MIT Alliance for Research and Technology Center for Future Urban Mobility.


  1. Alexander, L., Jiang, S., Murga, M., González, M.C.: Origin–destination trips by purpose and time of day inferred from mobile phone data. Transp. Res. Part C Emerg. Technol. 58, 240–250 (2015)CrossRefGoogle Scholar
  2. Ampt, E.S., Ortúzar, J.D.D.: On best practice in continuous large-scale mobility surveys. Transp. Rev. 24(3), 337–363 (2004)CrossRefGoogle Scholar
  3. Bachu, P., Dudala, T., Kothuri, S.: Prompted recall in global positioning system survey: proof-of-concept study. Transp. Res. Rec. J. Transp. Res. Board 1768, 106–113 (2001)CrossRefGoogle Scholar
  4. Behrens, R., Masaoe. E.: Towards improved travel diary survey instruments in African cities: findings of a comparative experimental application of trip-based, placebased and activity-based diaries in Cape Town and Dar Es Salaam. In: Southern African Transport Conference, Pretoria. (2009)
  5. Behrens, R., Diaz-Olvera, L., Plat, D., Pochet, P.: Collection of passenger travel data in Sub-Saharan African cities: towards improving survey instruments and procedures. Transp. Policy 13(1), 85–96 (2006)CrossRefGoogle Scholar
  6. Behrens, R.D., McCormick, D., Mfinanga, D. (eds.): Paratransit in African cities: Operations, Regulation and Reform. Routledge, Abingdon (2015)Google Scholar
  7. Bricka, S.G., Sen, S., Paleti, R., Bhat, C.R.: An analysis of the factors influencing differences in survey-reported and GPS-recorded trips. Transp. Res. Part C Emerg. Technol. 21(1), 67–88 (2012)CrossRefGoogle Scholar
  8. Cameron, A.C., Trivedi, P.K.: Microeconometrics: Methods and Applications. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  9. Cottrill, C., Pereira, F., Zhao, F., Dias, I., Lim, H.B., Ben-Akiva, M., Zegras, C.: Future mobility survey: experience in developing a smart-phone-based travel survey in Singapore. Transp. Res. Rec. 2354, 59–67 (2013)CrossRefGoogle Scholar
  10. de Leeuw, E.D., de Heer, W.: Trends in household survey nonresponse: a longitudinal and international comparison. In: Groves, R.M., Dillman, A.D., Eltinge, J., Little, R. (eds.) Survey nonresponse, pp. 41–54. Wiley, New York (2002)Google Scholar
  11. Demissie, M.G., Phithakkitnukoon, S., Sukhvibul, T., Antunes, F., Gomes, R., Bento, C.: Inferring passenger travel demand to improve urban mobility in developing countries using cell phone data: a case study of Senegal. IEEE Trans. Intell. Transp. Syst. 17(9), 2466–2478 (2016)CrossRefGoogle Scholar
  12. Economic and Social Research Foundation (ESRF).: Tanzania Human Development Report 2014. United Nations Development Programme and Government of the United Republic of Tanzania, Dar es Salaam (2015)Google Scholar
  13. Filmer, D., Pritchett, L.H.: Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. Demography 38(1), 115–132 (2001)Google Scholar
  14. Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., Sibert, J.: AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27(2), 233–249 (2012)CrossRefGoogle Scholar
  15. Greene, W.H.: Econometric Analysis. Pearson Education India, Bangalore (2003)Google Scholar
  16. Guevara, C.A.: Critical assessment of five methods to correct for endogeneity in discrete-choice models. Transp. Res. Part A Policy Pract. 82, 240–254 (2015)CrossRefGoogle Scholar
  17. Hall, D.B.: Zero-inflated poisson and binomial regression with random effects: a case study. Biometrics 56(4), 1030–1039 (2000)CrossRefGoogle Scholar
  18. Hanson, S., Hanson, P.: The travel-activity patterns of urban residents: dimensions and relationships to sociodemographic characteristics. Econ. Geogr. 57(4), 332–347 (1981)CrossRefGoogle Scholar
  19. Hensher, D.A., Greene, W.H.: The mixed logit model: the state of practice. Transportation 30(2), 133–176 (2003)CrossRefGoogle Scholar
  20. Jiang, S., Ferreira, J., González, M.C.: Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore. IEEE Trans. Big Data 3(2), 208–219 (2017)CrossRefGoogle Scholar
  21. Kagerbauer, M., Manz, W., Zumkeller, D.: Analysis of PAPI, CATI, and CAWI methods for a multiday household travel survey. In: Zmud, J., Lee-Gosselin, M., Munizaga, M., Carrasco, J.A. (eds.) Transport survey methods: best practice for decision making, pp. 289–304. Emerald Group Publishing Limited, Bingley (2013)CrossRefGoogle Scholar
  22. Kiunsi, R.: A review of traffic congestion in Dar Es Salaam City from the physical planning perspective. J. Sustain. Dev. 6(2), 94–103 (2013)CrossRefGoogle Scholar
  23. Kiunsi, R.: The constraints on climate change adaptation in a city with a large development deficit: the case of Dar Es Salaam. Environ. Urban. (2013b)
  24. Lambert, D.: Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(1), 1–14 (1992)CrossRefGoogle Scholar
  25. Madre, J.-L., Axhausen, K.W., Brög, W.: Immobility in travel diary surveys. Transportation 34, 107–128 (2007)CrossRefGoogle Scholar
  26. Masaoe, E.N., Del Mistro, R.F., Makajuma, G.: Travel behaviour in Cape Town, Dar Es Salaam and Nairobi Cities. SATC 2011. (2011)
  27. McDonald, N., Porter, C., Gorham, R.: Availability of travel forecasting methods and data for air quality planning in developing countries. Transp. Res. Rec. 1859, 110–116 (2003)CrossRefGoogle Scholar
  28. McGuckin, N., Keyes, M.A., Liss, S.: Hang-ups: looking at non-response in telephone surveys. US Department of Transportation: (2004)
  29. Melbye, D.C., Møller-Jensen, L., Andreasen, M.H., Kiduanga, J., Busck, A.G.: Accessibility, congestion and travel delays in Dar Es Salaam–a time–distance perspective. Habitat Int. 46, 178–186 (2015)CrossRefGoogle Scholar
  30. Mkalawa, C.C., Haixiao, P.: Dar Es Salaam City temporal growth and its influence on transportation. Urban Plan Transp. Res. 2(1), 423–446 (2014)CrossRefGoogle Scholar
  31. Moran, Patrick A.P.: Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17–23 (1950)CrossRefGoogle Scholar
  32. National Bureau of Statistics (NBS).: Basic Demographic and Socio-Economic Profile Report: Tanzania Mainland. United Republic of Tanzania, Ministry of Finance (2014)Google Scholar
  33. Nawaranthne, K., Zhao, F., Pereira, F.C., Zegras, C.C., Ben-Akiva, M.:The impact of GPS based outdoor activity detection on smartphone battery life. In: 10th International Conference on Transport Survey Methods, Australia (2014)Google Scholar
  34. Ndibatya, I., Coetzee, J., Booysen, T.: Mapping the informal public transport network in Kampala with smartphones: international. Civil Eng. Siviele Ingenieurswese 25.1(2017), 35–40 (2017)Google Scholar
  35. Nkurunziza, A., Zuidgeest, M., Brussel, M., Van Maarseveen, M.: Modeling commuter preferences for the proposed bus rapid transit in Dar-Es-Salaam. J. Public Transp. 15(2), 5 (2012)CrossRefGoogle Scholar
  36. Ortúzar, J.D.: Travel survey methods in latin america. In: Stopher P., Stecher C. (eds.) Travel Survey Methods. pp. 1–18 (2006)Google Scholar
  37. Pinelli, F., Nair, R., Calabrese, F., Berlingerio, M., Di Lorenzo, G., Sbodio, M.L.: Data-driven transit network design from mobile phone trajectories. IEEE Trans. Intell. Transp. Syst. 17(6), 1724–1733 (2016)CrossRefGoogle Scholar
  38. Poushter, J.: Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. Pew Research Center. (2016)
  39. Rieser-Schüssler, N., Axhausen, K.W.: Self-tracing and reporting: state of the art in the capture of revealed behaviour. Handbook of Choice Modelling, pp. 131–151. Edward Elgar Publishing, Cheltenham (2014)Google Scholar
  40. Saddier, S., Patterson, Z., Johnson, A., Chan, M.: Mapping the Jitney network with smartphones in Accra, Ghana: the AccraMobile experiment. Transp. Res. Rec. J. Transp. Res. Board 2581, 113–122 (2016)CrossRefGoogle Scholar
  41. Schafer, A.: Regularities in travel demand: an international perspective. J. Transp. Stat. 3(3), 1–31 (2000)Google Scholar
  42. Shen, L., Stopher, P.R.: Review of GPS travel survey and GPS data-processing methods. Trans. Rev. 34(3), 316–334 (2014)CrossRefGoogle Scholar
  43. Skaug, H., Fournier, D., Nielsen, A., Magnusson, A., Bolker, B.: Generalized linear mixed models using AD model builder. R Package Version 0.7 2 (2012)Google Scholar
  44. Stopher, P.R.: Use of an activity-based diary to collect household travel data. Transportation 19, 159–176 (1992)CrossRefGoogle Scholar
  45. Stopher, P., Fitzgerald, C., Xu, M.: Assessing the accuracy of the Sydney household travel survey with GPS. Transportation 34(6), 723–741 (2007)CrossRefGoogle Scholar
  46. Weiner, E.: Urban Transportation Planning in the United States: History, Policy, and Practice, 4th edn. Springer, New York (2013)CrossRefGoogle Scholar
  47. Wolf, J., Wilhelm, J., Casas, J., Sen, S.: A case study: multiple data collection methods and the NY/NJ/CT regional travel survey. Transport Survey Methods: Best Practice for Decision Making, pp. 71–90. Emerald Group Publishing Limited, Bingley (2013)CrossRefGoogle Scholar
  48. Zhao, F., Pereira, F.C., Ball, R., Kim, Y., Han, Y., Zegras, C., Ben-Akiva, M.: Exploratory analysis of a smartphone-based travel survey in Singapore. Transp. Res. Rec. 2494, 45–56 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Christopher Zegras
    • 1
  • Menghan Li
    • 1
  • Talip Kilic
    • 2
  • Nancy Lozano-Gracia
    • 3
  • Ajinkya Ghorpade
    • 4
  • Marco Tiberti
    • 2
  • Ana I. Aguilera
    • 3
  • Fang Zhao
    • 5
  1. 1.Department of Urban Studies and PlanningMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Development Data GroupThe World BankRomeItaly
  3. 3.Social, Urban, Rural, and Resilience Global PracticeThe World BankWashington, D.C.USA
  4. 4.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Singapore-MIT Alliance for Research and TechnologyFuture Urban Mobility LabSingaporeSingapore

Personalised recommendations