, Volume 45, Issue 6, pp 1701–1720 | Cite as

Total cost minimizing transit route structures considering trips towards CBD and periphery

  • Sergio Jara-DíazEmail author
  • Antonio Gschwender
  • Claudia Bravo


The total cost minimizing approach to design transit systems is extended here beyond the usual dimensions of fleet (frequency) and vehicle size in order to examine the most appropriate spatial setting of transit lines as well. Motivated by the case of large cities in Latin America, characterized by high volumes of relatively long urban trips, we analyze the best ways to provide public transport services in a simplified urban setting represented by an extended cross-shaped network, where short trips (periphery–center) and long trips (periphery–periphery) coexist, generating economies of density. Three families of strategic lines structures are compared: mostly direct, feeder–trunk and hub and spoke. For each structure fleet and vehicle sizes are optimized, considering total (users’ and operators’) costs. The best structure is found parametrically in total passenger volume, the proportion of long trips and the value of the transfer penalty. The advantages of each dominating structure are explained in terms of factors like idle capacity, waiting or in-vehicle times and number of transfers.


Public transport Lines structure Design Feeder–trunk Hub and spoke 



This research was partially funded by Fondecyt, Chile, Grant 1160410, and the Institute for Complex Engineering Systems, grants ICM: P-05-004-F and CONICYT: FB0816. We are grateful to Juan Carlos Muñoz and to the anonymous referees for useful and constructive comments.


  1. Aldaihani, M.M., Quadrifoglio, L., Dessouky, M.M., Hall, R.: Network design for a grid hybrid transit service. Transp. Res. A 38, 511–530 (2004)Google Scholar
  2. Badia, H., Estrada, M., Robusté, F.: Competitive transit network design in cities with radial street patterns. Transp. Res. B 59, 161–181 (2014)CrossRefGoogle Scholar
  3. CAF: Observatorio de Movilidad Urbana para América Latina. Eduardo Alcántara de Vasconcellos, ed. Corporación Andina de Fomento, Caracas, Venezuela (2010)Google Scholar
  4. Ceder, A.: Operational objective functions in designing public transport routes. J. Adv. Transp. 35, 125–144 (2001)CrossRefGoogle Scholar
  5. Chang, S.K., Schonfeld, P.M.: Multiple period optimization of bus transit systems. Transp. Res. B 25, 453–478 (1991)CrossRefGoogle Scholar
  6. Currie, G.: The demand performance of Bus Rapid Transit. Journal of Public Transportation 8, 41–55 (2005)CrossRefGoogle Scholar
  7. Daganzo, C.F.: Structure of competitive transit networks. Transp. Res. B 44, 434–446 (2010)CrossRefGoogle Scholar
  8. Estrada, M., Roca-Riu, M., Badia, H., Robusté, F., Daganzo, C.F.: Design and implementation of efficient transit networkd: procedure, case study and validity test. Transp. Res. A 45, 935–950 (2011)Google Scholar
  9. Fielbaum, A., Jara-Díaz, S.R., Gschwender, A.: A parametric description of cities for the normative analysis of transport systems. Netw. Spat. Econ. (2017). doi: 10.1007/s11067-016-9329-7 CrossRefGoogle Scholar
  10. Fielbaum, A., Jara-Diaz, S., Gschwender, A.: Optimal public transport networks for a general urban structure. Transp. Res. B 94, 298–313 (2016)CrossRefGoogle Scholar
  11. Fielbaum, A., Jara-Díaz, S.R., Gschwender, A.: Transit lines on a general parametric city: feasible heuristics or restricted optimal? Working paper. Universidad de Chile (2017b)Google Scholar
  12. Gschwender, A., Jara-Díaz, S.R., Bravo, C.: Feeder-trunk or direct lines? Economies of density, transfer costs and transit structure in an urban context. Transp. Res. A 88, 209–222 (2016)Google Scholar
  13. Holroyd, E.M.: The optimum bus service: a theoretical model for a large uniform urban area. In: Edie, L.C., Herman, R., Rothery, R. (eds.) Vehicular Traffic Science, Proceedings of the 3rd International Symposium on the Theory of Traffic Flow. Elsevier, New York (1967)Google Scholar
  14. Jansson, J.O.: A simple bus line model for optimisation of service frequency and bus size. J. Transp. Econ. Policy 14, 53–80 (1980)Google Scholar
  15. Jara-Díaz, S.R., Gschwender, A.: Towards a general microeconomic model for the operation of public transport. Transp. Rev. 23, 453–469 (2003a)CrossRefGoogle Scholar
  16. Jara-Díaz, S.R., Gschwender, A.: From the single line model to the spatial structure of transit services: Corridors or direct? J. Transp. Econ. Policy 37, 261–277 (2003b)Google Scholar
  17. Jara-Díaz, S.R., Gschwender, A.: The effect of financial constraints on the optimal design of public transport services. Transportation 36, 65–75 (2009)CrossRefGoogle Scholar
  18. Jara-Díaz, S.R., Gschwender, A., Ortega, M.: Is public transport based on transfers optimal? A theoretical investigation. Transp. Res. B 46, 808–816 (2012)CrossRefGoogle Scholar
  19. Jara-Díaz, S.R., Gschwender, A., Ortega, M.: The impact of a financial constraint on the spatial structure of public transport services. Transportation 41, 21–36 (2014)CrossRefGoogle Scholar
  20. Kepaptsoglou, K., Karlaftis, M.: Transit routes networks design problem: review. J. Transp. Eng. 135, 491–505 (2009)CrossRefGoogle Scholar
  21. Kocur, G., Hendrickson, C.: Design of local bus service with demand equilibration. Transp. Sci. 16, 149–170 (1982)CrossRefGoogle Scholar
  22. Mohring, H.: Optimization and scale economies in urban bus transportation. Am. Econ. Rev. 62, 591–604 (1972)Google Scholar
  23. Muñoz, J.C., Batarce, M., Torres, I.: Comparación del nivel de servicio del transporte público de seis ciudades latinoamericanas. Congreso Chileno de Ingeniería de Transporte, Santiago (2013)Google Scholar
  24. Newell, G.F.: Some issues relating to the optimal design of bus routes. Transp. Sci. 13, 20–35 (1979)CrossRefGoogle Scholar
  25. Quadrifoglio, L., Li, X.: A methodology to derive the critical demand density for designing and operating feeder transit services. Transp. Res. B 43, 922–935 (2011)CrossRefGoogle Scholar
  26. Raveau, S., Guo, Z., Muñoz, J.C., Wilson, N.: A behavioural comparison of route choice on metro networks: time, transfers, crowding, topology and socio-demographics. Transp. Res. A 66, 185–195 (2014)Google Scholar
  27. Sectra: Encuesta Origen-Destino de Viajes, Santiago 2012 (Trip Origin-Destination Survey, Santiago 2012) (2015).
  28. Tirachini, A., Hensher, D., Jara-Díaz, S.: Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network. Res. Transp. Econ. 29, 231–242 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sergio Jara-Díaz
    • 1
    Email author
  • Antonio Gschwender
    • 1
  • Claudia Bravo
    • 1
  1. 1.Universidad de ChileSantiagoChile

Personalised recommendations