, Volume 43, Issue 6, pp 955–977 | Cite as

Activity space estimation with longitudinal observations of social media data

  • Jae Hyun LeeEmail author
  • Adam W. Davis
  • Seo Youn Yoon
  • Konstadinos G. Goulias


In this paper, we demonstrate the use of an inexpensive and easy-to-collect long-term dataset to address the problems caused by basing activity space studies off short-term data. In total, we use 63,114 geo-tagged tweets from 116 unique users to create individuals’ activity spaces based on minimum bounding geometry (convex hull). By using polygon density maps of activity space, we found clear differences between weekday and weekend activity spaces, and were able to observe the growth trajectory of activity space over 17 weeks. In order to reflect the heterogeneous nature of spatial behavior and tweeting habits, we used Latent Class Analysis twice. First, to identify five unique patterns of location-based activity spaces that are different in shape and anchoring. Second, we identify three unique growth trajectories. The comparison among these latent growth trajectories shows that in order to capture the extent of activity spaces we need long time periods for some individuals and shorter periods of observation for others. We also show that past studies using a single digit number of weeks may not be sufficient to capture individuals’ activity space. The major activity locations identified using a multilevel latent class model, do not appear to be statistically related to the growth patterns of Twitter users activity spaces. The evidence here shows Twitter data can be a valuable complementary source of information for heterogeneity analysis in activity-based modeling and simulation.


Activity space Latent class anaylsis Social media data Travel behavior dynamics 


  1. Axhausen, K.W., Zimmermann, A., Schönfelder, S., Rindsfüser, G., Haupt, T.: Observing the rhythms of daily life: a 6-week travel diary. Transportation. 29(2), 95–124 (2002). doi: 10.1023/A:1014247822322 CrossRefGoogle Scholar
  2. Buliung, R.N., Kanaroglou, P.S.: Urban form and household activity-travel behavior. Growth. Change. 37(2), 172–199 (2006). doi: 10.1111/j.1468-2257.2006.00314.x CrossRefGoogle Scholar
  3. Burns, L.D.: Transportation, temporal, and spatial components of accessibility. LexingtonBooks, Lexington (1979)Google Scholar
  4. Chan, R., Schofer, J.: Role of social media in communicating transit disruptions. Transp. Res. Rec. 2415, 145–151 (2014). doi: 10.3141/2415-16 CrossRefGoogle Scholar
  5. Chen, Y., Ravulaparthy, S., Deutsch, K., Dalal, P., Yoon, S.Y., Lei, T., Hu, H.-H.: Development of indicators of opportunity-based accessibility. Transp. Res. Rec. 2255, 58–68 (2011). doi: 10.3141/2255-07 CrossRefGoogle Scholar
  6. Davis, A.W., Lee, J.-H., Deutsch-Burgner, K., McBride, E., Goulias, K.G.: Perception and reality: linking metrics of place perception to measurable attributes of place using cross-classified SEM analysis. Presented at the international choice modeling conference, Austin, TX. Retrieved from (2015)
  7. DeJong, T.M.: A comparison of three diversity indices based on their components of richness and evenness. Oikos 26(2), 222–227 (1975). doi: 10.2307/3543712 CrossRefGoogle Scholar
  8. Dijst, M.: Two-earner families and their action spaces: A case study of two dutch communities. GeoJournal 48(3), 195–206 (1999). doi: 10.1023/A:1007031809319 CrossRefGoogle Scholar
  9. Duggan, M., Ellison, N.B., Lampe, C., Lenhart, A., Madden, M., Rainie, L., Smith, A.: Social media update 2014: while facebook remains the most popular site, other platforms see higher rates of growth. Washington, D.C.: Pew Research Center. (2015)
  10. Fan, Y., Khattak, A.: Urban form, individual spatial footprints, and travel: examination of space-use behavior. Transp. Res. Rec. 2082, 98–106 (2008). doi: 10.3141/2082-12 CrossRefGoogle Scholar
  11. Golledge, R.G., Stimson, R.J.: Spatial Behavior: A Geographic Perspective. The Guilford Press, New York (1997)Google Scholar
  12. Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007). doi: 10.1007/s10708-007-9111-y CrossRefGoogle Scholar
  13. Goulias, K.G.: Longitudinal analysis of activity and travel pattern dynamics using generalized mixed Markov latent class models. Transp. Res. Part B 33(8), 535–558 (1999). doi: 10.1016/S0191-2615(99)00005-3 CrossRefGoogle Scholar
  14. Hägerstraand, T.: What about people in regional science? Pap. reg. sci. 24(1), 7–24 (1970)CrossRefGoogle Scholar
  15. Hägerstrand, T.: Reflections on “What about people in regional science?”. In Papers of the Regional Science Association, 66(1), 1-6. Springer-Verlag (1989)Google Scholar
  16. Jennrich, R.I., Turner, F.B.: Measurement of non-circular home range. J. Theor. Biol 22(2), 227–237 (1969). doi: 10.1016/0022-5193(69)90002-2 CrossRefGoogle Scholar
  17. Kim, S., Ulfarsson, G.F.: Activity space of older and working-age adults in the puget sound region, Washington, U.S.A. Presented at the transportation research board 94th annual meeting. (2015)
  18. Kitamura, R., Yoshii, T., Yamamoto, T.: The expanding sphere of travel behaviour research: selected papers from the 11th International conference on travel behaviour research. Emerald Group Publishing (2009)Google Scholar
  19. Kitamura, R., Kostyniuk, L.P., Uyeno, M.J.: Basic properties of urban time-space paths: empirical tests. Transp. Res. Rec. 794 (1981)Google Scholar
  20. Kitamura, R., Yamamoto, T., Kishizawa, K., Pendyala, R.M.: Stochastic frontier models of prism vertices. Transportation Research Record: Journal of the Transportation Research Board 1718(1), 18–26 (2000)CrossRefGoogle Scholar
  21. Kondo, K., Kitamura, R.: Time-space constraints and the formation of trip chains. Reg. Sci. Urban. Econ. 17(1), 49–65 (1987)CrossRefGoogle Scholar
  22. Kostyniuk, L. P., Kitamura, R.: Life cycle and household time-space paths: empirical investigation. Transp. Res. Rec. 879 (1982)Google Scholar
  23. Kwan, M.P.: Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geogr. anal. 30(3), 191–216 (1998)CrossRefGoogle Scholar
  24. Kwan, M.P.: Gender and individual access to urban opportunities: a study using space–time measures. Prof. Geogr. 51(2), 210–227 (1999a)CrossRefGoogle Scholar
  25. Kwan, M.P.: Gender, the home-work link, and space-time patterns of nonemployment activities. Econ. geogr. 75(4), 370–394 (1999b)CrossRefGoogle Scholar
  26. Kwan, M. P. (2000). 14 Human Extensibility and Individual Hybrid-accessibility in Space-time: A Multi-scale Representation Using GIS. Inf. Place Cyberspace. 241Google Scholar
  27. Kwan, M.P.: GIS Methods in time-geographic research: geocomputation and geovisualization of human activity patterns. Geogr. Ann 86(4), 267–280 (2004)CrossRefGoogle Scholar
  28. Kwan, M.P., Lee, J.: Geovisualization of human activity patterns using 3D GIS: a time-geographic approach. Spat. Integr. Soc. Sci. 27 (2004)Google Scholar
  29. Kwan, M.P., Janelle, D.G., Goodchild, M.F.: Accessibility in space and time: a theme in spatially integrated social science. J. Geogr. Syst. 5(1), 1–3 (2003)CrossRefGoogle Scholar
  30. Lukočienė, O., Varriale, R., Vermunt, J.K.: The simultaneous decision (s) about the number of lower-and higher-level classes in multilevel latent class analysis. Sociol. Methodol. 40(1), 247–283 (2010)CrossRefGoogle Scholar
  31. Lee, J.-H., Gao, S., Goulias, K. G.: Can Twitter data be used to validate travel demand models? Presented at the 14th international conference on travel behavior research, Windsor, UK. (2015)
  32. Liao, F., Arentze, T., Timmermans, H.: Incorporating space–time constraints and activity-travel time profiles in a multi-state supernetwork approach to individual activity-travel scheduling. Transp. Res. Part B 55, 41–58 (2013)CrossRefGoogle Scholar
  33. Mai, E., Hranac, R.: Twitter interactions as a data source for transportation incidents. Presented at the transportation research board 92nd annual meeting. (2013)
  34. McCutcheon, A. L.: Basic concepts and procedures in single-and multiple-group latent class analysis. Appl. Latent Cl. Anal. 56–88 (2002)Google Scholar
  35. McKenzie, G., Janowicz, K.: Coerced geographic information: The not-so-voluntary side of user-generated geo-content. Presented at the eighth international conference on geographic information science (GIScience’14), Vienna, Austria. (2014)
  36. Miller, H.J.: Modelling accessibility using space-time prism concepts within geographical information systems. Int. J. Geogr. Inf. Syst. 5(3), 287–301 (1991). doi: 10.1080/02693799108927856 CrossRefGoogle Scholar
  37. Miller, H.J.: Measuring space-time accessibility benefits within transportation networks: basic theory and computational procedures. Geogr. Anal. 31(1), 1–26 (1999)CrossRefGoogle Scholar
  38. Miller, H.J., Wu, Y.H.: GIS software for measuring space-time accessibility in transportation planning and analysis. GeoInformatica 4(2), 141–159 (2000)CrossRefGoogle Scholar
  39. Neutens, T., Delafontaine, M., Scott, D.M., De Maeyer, P.: An analysis of day-to-day variations in individual space–time accessibility. J. Transp. Geogr. 23, 81–91 (2012). doi: 10.1016/j.jtrangeo.2012.04.001 CrossRefGoogle Scholar
  40. Nishii, K., Kondo, K.: Trip linkages of urban railway commuters under time-space constraints: some empirical observations. Transp. Res. Part B 26(1), 33–44 (1992)CrossRefGoogle Scholar
  41. Nylund, K.L., Asparouhov, T., Muthén, B.O.: Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. 14(4), 535–569 (2007). doi: 10.1080/10705510701575396 CrossRefGoogle Scholar
  42. Oliver, L.N., Schuurman, N., Hall, A.W.: Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. Int. J. Health Geogr. 6(1), 41 (2007). doi: 10.1186/1476-072X-6-41 CrossRefGoogle Scholar
  43. Paek, J., Kim, J., Govindan, R. (2010). Energy-efficient rate-adaptive GPS-based positioning for smartphones. In Proceedings of the 8th international conference on Mobile systems, applications, and services (pp. 299–314). ACM. Retrieved from
  44. Pender, B., Currie, G., Delbosc, A., Shiwakoti, N.: International Study of Current and Potential Social Media Applications in Unplanned Passenger Rail Disruptions. Transportation Research Record: Journal of the Transportation Research Board 2419, 118–127 (2014). doi: 10.3141/2419-12 CrossRefGoogle Scholar
  45. Pendyala, R.M.: Time use and travel behavior in space and time. Transp. Syst. plan. 2–1 (2003)Google Scholar
  46. Pendyala, R.M., Goulias, K.G., Kitamura, R.: Impact of telecommuting on spatial and temporal patterns of household travel. Transportation 18(4), 383–409 (1991)CrossRefGoogle Scholar
  47. Pendyala, R.M., Yamamoto, T., Kitamura, R.: On the formulation of time-space prisms to model constraints on personal activity-travel engagement. Transportation 29(1), 73–94 (2002)CrossRefGoogle Scholar
  48. Rai, R., Balmer, M., Rieser, M., Vaze, V., Schönfelder, S., Axhausen, K.: Capturing human activity spaces: new geometries. Transp. Res. Rec. 2021, 70–80 (2007). doi: 10.3141/2021-09 CrossRefGoogle Scholar
  49. Schönfelder, S., Axhausen, K.W.: Activity spaces: measures of social exclusion? Transp. Policy 10(4), 273–286 (2003). doi: 10.1016/j.tranpol.2003.07.002 CrossRefGoogle Scholar
  50. Shaw, S.L., Yu, H.: A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space. J. Transp. Geogr. 17(2), 141–149 (2009)CrossRefGoogle Scholar
  51. Susilo, Y., Kitamura, R.: Analysis of day-to-day variability in an individual’s action space: exploration of 6-week mobidrive travel diary data. Transp. Res. Rec. 1902, 124–133 (2005). doi: 10.3141/1902-15 CrossRefGoogle Scholar
  52. Timmermans, H., Arentze, T., Joh, C.H.: Analysing space-time behaviour: new approaches to old problems. Prog. Hum. Geogr. 26(2), 175–190 (2002)CrossRefGoogle Scholar
  53. Ukkusuri, S., Zhan, X., Sadri, A., Ye, Q.: Use of social media data to explore crisis informatics: study of 2013 Oklahoma Tornado. Transp. Res. Rec. 2459, 110–118 (2014). doi: 10.3141/2459-13 CrossRefGoogle Scholar
  54. Vermunt, J.K., Magidson, J.: Latent class cluster analysis. Appl. Latent Cl. Anal. 11, 89–106 (2002)CrossRefGoogle Scholar
  55. Vermunt, J.K., Magidson, J.: Technical guide for latent GOLD 5.0: basic, advanced, and syntax. (2013)
  56. Weber, J., Kwan, M.P.: Bringing time back in: a study on the influence of travel time variations and facility opening hours on individual accessibility. Prof. Geogr. 54(2), 226–240 (2002)Google Scholar
  57. Worton, B.J.: A review of models of home range for animal movement. Ecol. Model. 38(3–4), 277–298 (1987). doi: 10.1016/0304-3800(87)90101-3 CrossRefGoogle Scholar
  58. Yamamoto, T., Kitamura, R., Pendyala, R.M.: Comparative analysis of time-space prism vertices for out-of-home activity engagement on working and nonworking days. Environ. Plan. 31(2), 235–250 (2004)CrossRefGoogle Scholar
  59. Yoon, S.Y., Goulias, K.G.: Impact of time-space prism accessibility on time use behavior and its propagation through intra-household interaction. Transp. Lett. 2(4), 245–260 (2010)CrossRefGoogle Scholar
  60. Yoon, S.Y., Deutsch, K.E., Chen, Y., Goulias, K.G.: Feasibility of using time-space prism to represent available opportunities and choice sets for destination choice models in the context of dynamic urban environments. Transportation 39(4), 807–823 (2012)CrossRefGoogle Scholar
  61. Yoon, S., Ravulaparthy, S.K., Goulias, K.G.: Dynamic diurnal social taxonomy of urban environments using data from a geocoded time use activity-travel diary and point-based business establishment inventory. Transp. Res. Part A 68, 3–17 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.GeoTrans Lab, Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Korea Research Institute for Human SettlementsDongan-Gu, Anyang-SiSouth Korea

Personalised recommendations