, Volume 43, Issue 5, pp 913–933 | Cite as

Analyzing time sensitivity to discomfort in the Paris subway: an interval data model approach

  • Matthieu de Lapparent
  • Martin Koning


We analyze individual travel discomfort-time tradeoffs in the Paris subway using stated choice experiments. The survey design allows to set up in a willingness-to-pay space to estimate the distributions of elasticities of values of travel time to crowd density and time multipliers. Several formulations of a generalized travel cost function are tested. Accounting for heterogeneity in preferences, the econometric models all take the form of an ordered probit with known bounds. We derive several estimates that could be used for fine-tuning of traffic simulation systems and more general transportation policy analysis.


Travel discomfort-time tradeoff Stated choice survey  Interval data model 


  1. Ben-Akiva, M., Lerman, S.: Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge (1985)Google Scholar
  2. Bradley, M., Daly, A.: Use of the logit scaling approach to test for the rank-order and fatigue effects in stated preference data. Transportation 21, 167–184 (1994)CrossRefGoogle Scholar
  3. Bradley, M., Daly, A.: New analysis issues in stated preference research. In: Ortuzar, J.D.D. (ed.) Stated Preference Modelling Techniques. Planning and Transport Research and Computation, London (2000)Google Scholar
  4. Cameron, T.A., Quiggin, J.: Estimation using contingent valuation data from a “dichotomous choice with follow-up” questionnaire. J. Environ. Econ. Manag. 27(3), 218–234 (1994)CrossRefGoogle Scholar
  5. Cox, T., Houdmont, J., Griffiths, A.: Rail passenger crowding, stress, health and safety in britain. Transp. Res. Part A 40(3), 244–258 (2006)Google Scholar
  6. CRCFRI.: A literature review of passenger crowding on metropolitan railways: psychological, cultural human and economic factors. Project R2, 104 (2012)Google Scholar
  7. de Palma, A., Kilani, M., Proost, S.: Discomfort in mass transit and its application for scheduling and pricing. Transp. Res. Part B 71, 1–18 (2015)CrossRefGoogle Scholar
  8. Evans, G., Wener, R.: Crowding and personal space invasion on the train: Please don’t make me sit in the middle. J. Environ. Psychol. 27(1), 90–94 (2007)CrossRefGoogle Scholar
  9. Flachaire, E., Hollard, G.: Starting-point bias and respondent uncertainty in dichotomous choice valuation surveys. Resour. Energy Econ. 29(3), 183–194 (2007)CrossRefGoogle Scholar
  10. Haab, T., McConnel, K.: Valuing Environmental and Natural Resources: The Econometrics of Non-Market Valuation. Edward Elgar, Worcester (2003)Google Scholar
  11. Hanemann, W., Loomis, J., Kanninen, B.: Statistical efficiency of double bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 73, 1255–1263 (1991)CrossRefGoogle Scholar
  12. Haywood, L., Koning, M.: Estimating crowding costs in public transport. DIW Discussion Paper (1293). (2013)Google Scholar
  13. Hensher, D., Rose, J., Collins, A.: Indentifying commuter preferences for existing modes and a proposed metro in sydney, australia with special reference to crowding. Public Transp. 3(2), 109–147 (2011)CrossRefGoogle Scholar
  14. Hensher, D., Rose, J., Greene, W.: Applied Choice Analysis: A Primer. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  15. Jara-Diaz, S., Gschwender, A.: Towards a general microeconomic model for the operation of public transport. Transp. Rev. 4(23), 453–469 (2003)CrossRefGoogle Scholar
  16. Kato, H.: Valuation of urban rail service-experiences from Tokyo, Japan. OECD/ITF Discussion Papers 01, 1–30 (2014)Google Scholar
  17. Kato, H., Kaneko, Y., Inoue, M.: Comparative analysis of transit assignment: evidence from urban railway system in the tokyo metropolitan area. Transportation 37(5), 775–799 (2010)CrossRefGoogle Scholar
  18. Kraus, M.: Discomfort externalities and marginal cost transit fares. J Urban Econ. 29(2), 249–259 (1991)CrossRefGoogle Scholar
  19. Kroes, E., Kouwenhoven, M., Debrincat, L., Pauget, N.: On the value of crowding in public transport for Île-de-France. OECD/ITF Discussion Papers 18, 1–37 (2013)Google Scholar
  20. Li, Z., Hensher, D.: Crowding and public transport: a review of willingness to pay evidence and its relevance in project appraisal. Transp. Policy 18, 880–887 (2011)CrossRefGoogle Scholar
  21. Long, J.: Regression Models for Categorical and Limited Dependent Variables, vol. Advanced Quantitative Techniques in the Social Sciences. SAGE Publications, Washington (1997)Google Scholar
  22. Maddala, G.: Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge (1986)Google Scholar
  23. Mohd Mahudin, N., Cox, T., Griffiths, A.: The measurement of rail passenger crowding: scale development and psychometric properties. Transp. Res. Part F 15, 38–51 (2012)CrossRefGoogle Scholar
  24. Observatoire des déplacements à Paris. Le bilan des déplacements en 2008 à paris. Technical report (2008)Google Scholar
  25. OECD-ITF. Valuing convenience in public transport. Technical report (2014)Google Scholar
  26. Parry, I., Small, K.: Should urban transit subsidies be reduced? Am. Econ. Rev. 99, 700–724 (2009)CrossRefGoogle Scholar
  27. Tirachini, A., Hensher, D., Jara-Diaz, S.: Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network. Res. Transp. Econ. 29, 231–242 (2010)CrossRefGoogle Scholar
  28. Tirachini, A., Hensher, D., Rose, J.: Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transp. Res. Part A 53, 36–52 (2013)Google Scholar
  29. Train, K.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  30. Tversky, A., Kahneman, D.: Loss aversion in riskless choice: a reference dependent model. Quart. J. Econ. 106, 1039–1061 (1991)CrossRefGoogle Scholar
  31. Wardman, M., Whelan, G.: Twenty years of rail crowding valuation studies: evidence and lessons from british experience. Transp. Rev. 31(3), 379–398 (2011)CrossRefGoogle Scholar
  32. Wener, R., Evans, G., Boately, P.: Commuting stress: psychological effects of a trip and spillover into the workplace. Transp. Res. Board 1924(2005), 112–117 (2005)CrossRefGoogle Scholar
  33. Whelan, G., Crockett, J.: An investigation of the willingness to pay to reduce rail overcrowding. Proceeding of the First International Conference on Choice Modelling, Harrogate (2009)Google Scholar
  34. Wilkinson, L.: The Grammar of Graphics. Springer, New York (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Transport and Mobility Laboratory (TRANSP-OR), School of Architecture, Civil and Environmental Engineering (ENAC)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des RéseauxUniversité Paris-Est.Marne-la-Vallée Cedex 2France

Personalised recommendations