, Volume 43, Issue 3, pp 491–505 | Cite as

Public transport demand: dynamic panel model analysis

  • Manel Daldoul
  • Sami Jarboui
  • Ahlem Dakhlaoui


This paper presents an original essay that explains the mobility behaviour towards the public transport supply in Tunisia. This research aims to determine the key variables affecting an individual’s decision to travel by public transport and explains how the use of these means fits the mobility strategies. The dynamic panel model is applied to twelve Tunisian Regional companies, where we aim to analyze the behaviours of Tunisian citizens in the regions where Regional Transport Companies ensure the total service supply of urban, interurban and suburban public transport of travellers. The results show that mobility behaviours are subject to various variables. In particular, service quality, mean price and active population are the most significant variables regarding public transport demand in Tunisia.


Transport demand Mobility behaviour Socioeconomics factor Public transport Dynamic panel model 

JEL Classification

C23 D12 L91 R41 



We thank three anonymous referees for making a range of interesting suggestions based on a previous version of this paper. We would also like to thank Louafi Bouzouina and Hind Aissaoui of the “Laboratory of Transport Economics” for rereading our paper and their comments.


  1. Arellano, M., Bond, S.: Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991)Google Scholar
  2. Balcombe, R., Mackett, R., Paulley, N., Preston, J., Shires, J., Titheridge, H., Wardman, M., White, P.: The demand for public transport: a practical guide. Transportation Research Laboratory Report, Transportation Research Laboratory, London (2004)Google Scholar
  3. Benham, J.L.: Analysis of a fare increase by use of a time-series and before-andafter data. Transp. Res. Rec. 877, 84–90 (1982)Google Scholar
  4. Bates, J., : Transit operating costs and fare requirements forecasting by using regression modelling. Transp. Res. Rec. 877, 75–79 (1982)Google Scholar
  5. Berechman, J.: Public transit economics and deregulation policy. North-Holland, Amsterdam (1993)Google Scholar
  6. Blundell, R., Bond, S.: Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 68, 29–51 (1998)Google Scholar
  7. Bonnel, P.: Prévoir la Demande de Transport, Presses de l'ENPC, pp. 425 (2004)Google Scholar
  8. Bresson, G., Dargay, J., Madre, J.L., Pirotte, A.: The main determinants of the demand for public transport: A comparative analysis of England and France using shrinkage estimators. Transp. Res. Part A 37(7), 605–627 (2003)Google Scholar
  9. Cervero, R.: Transit pricing research: a review and synthesis. Transportation 17, 117–139 (1990)CrossRefGoogle Scholar
  10. Dargay, J, Hanly M.:Bus Fare Elasticities. Report to the UK Department of the Environment, Transport and the Regions. London, ESRC Transport Studies Unit, University College London, 132.25, (1999)Google Scholar
  11. Dargay, J.M., Hanly, M.: The demand for local bus services in England. J. Transp. Econ. Policy 36(1), 73–91 (2002)Google Scholar
  12. De Palma, A.., Lindsey, R.: Optimal timetables for public transportation. Transp. Res. 35(8), 789–813 (2001)Google Scholar
  13. Deb, K., Filippini, M.: Public bus transport demand elasticities in India. J. Transp. Econ. Policy 47(3), 419–436 (2013)Google Scholar
  14. Fitzroy, F.R., Smith I.: The Demand for Public Transport: some estimates from Zurich. CRIEFF Discussion Papers 9308.Centre for Research into Industry, Enterprise, Finance and the Firm, Fife, (1993)Google Scholar
  15. FitzRoy, F., Smith, I.: The demand for public transport: some estimates from Zurich. Int. J. Transp. Econ. 21, 197–207 (1994)Google Scholar
  16. Fitzroy, F.R., Smith, I.: Season tickets and the demand for public transport. Kyklos 52(2), 219–238 (1999)Google Scholar
  17. Gagnepain, P., Ivaldi, M.: Incentive regulatory policies: the case of public transit systems in France. RAND J. Econ. 33, 605–629 (2002)CrossRefGoogle Scholar
  18. Gakenheimer, R.: Urban mobility in the developing world. Transp. Res. Part A 33, 671–689 (1999)Google Scholar
  19. Ghazouani, S., Goaïed, M.: Analyse micro-économétrique de la demande de transport urbain pour la ville de Tunis», Économie & prévision. Numéro 108(2), 47–62 (1993)Google Scholar
  20. Goodwin, P.B.: A review of new demand elasticities with special reference to short and long-run effects of price changes. J. Transp. Econ. Policy 26(2), 155–169 (1992)Google Scholar
  21. Goodwin, P.B., Williams, H.C.L.: Public transport demand models and elasticity measures: An overviews of recent British experience. Transp. Res. Part B 19(3), 253–259 (1985)CrossRefGoogle Scholar
  22. Goulias, K.G.: Traveler behavior and values research for human-centered transportation systems. The Pennsylvania State University, Committee on Traveler Behaviour and Values (2000). 6 pGoogle Scholar
  23. Jarboui, S.: Managerial psychology and transport firms efficiency: a stochastic frontier analysis. RMS (2014). doi: 10.1007/s11846-014-0149-1 Google Scholar
  24. Jarboui, S., Forget, P., Boujelbene, Y.: The efficiency of public road transport: a literature review via the classification scheme. Public Transp. 4(2), 101–128 (2012)CrossRefGoogle Scholar
  25. Jarboui, S., Forget, P., Boujelbene, Y.: Efficiency evaluation in public road transport: a stochastic frontier analysis. Transport (2013a). doi: 10.3846/16484142.2013.785019 Google Scholar
  26. Jarboui, S., Forget, P., Boujelbene, Y.: Public road transport efficiency: a stochastic frontier analysis. J. Transp. Syst. Eng. Inform. Technol. 13(5), 64–71 (2013b)Google Scholar
  27. Lyons, G., Chatterjee, K., Beecroft, M., Marsden, G.: Determinants of travel demand—exploring the future of society and lifestyles in the UK. Transp. Policy 9, 17–27 (2002)CrossRefGoogle Scholar
  28. Matas, A.: Demand and revenue implications of an integrated public transport policy: the case of Madrid. Transp. Rev. 24, 195–217 (2004)CrossRefGoogle Scholar
  29. Oum, T.H.: Alternative demand models and their elasticity estimates. J. Transp. Econ. Policy. 23(2), 163–187 (1989)Google Scholar
  30. Romilly, P.: Subsidy and local bus service deregulation in Britain: A re-evaluation. J. Transp. Econ. Policy 35(2), 161–193 (2001)Google Scholar
  31. Roodman, D.: How to do xtabond2: an introduction to “difference” and “system” GMM in stata. Working Paper, vol.103. Center for Global Development, Washington (2006)Google Scholar
  32. Small, K.A., Winston, C.: The demand for transportation: models and applications. In: Gómez-Iba ez, J., Tye, W.B., Winston, C.A. (eds.) Essays in Transportation Economics and Policy, pp. 11–56. Brookings Institution Press, Washington, D.C (1999)Google Scholar
  33. Souche, S.: Measuring the structural determinants of urban travel demand. Transp. Policy. 17(3), 127–134 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory of Economics and Industrial Management (LEGI), Polytechnic School of Tunisia and Faculty of Economics and management of NabeulUniversity of CarthageTunisTunisia
  2. 2.Laboratory of Transport Economics (LET), ENTPEUniversity of LyonLyonFrance
  3. 3.Unit of Research in Applied Economics (URECA), Faculty of Economics and ManagementUniversity of SfaxSfaxTunisia

Personalised recommendations