, Volume 43, Issue 3, pp 407–423 | Cite as

A combined destination and route choice model for a bicycle sharing system

  • Felipe González
  • Carlos Melo-Riquelme
  • Louis de Grange


This paper studies the supply variables that influence the destination and route choices of users of a bicycle sharing system in the Chilean city of Santiago. A combined trip demand logit model is developed whose explanatory variables represent attributes relating to the topology of the possible routes and other characteristics such as the presence of bikeways, bus service and controlled intersections. The data for the explanatory variables and system users were collected through field surveys of the routes and interviews conducted at the system stations. The results of the model show that proximity to stops on the Santiago Metro and the existence of bikeways are the main factors influencing destination and route choices. Also indicated by the model estimates are gender differences, a preference for tree-lined routes and an avoidance of routes with bus services. Finally, the outcomes reveal considerable potential for the integration of bicycle sharing systems with Metro transit.


Bicycle Combined model Route choice Destination choice Bikeway Bicycle-Metro integration 



This research was supported by FONDECYT Grant No. 11121199 and Centre for Sustainable Urban Development CEDEUS (Conicyt/Fondap/15110020).


  1. Abrahamsson, T., Lundqvist, L.: Formulation and estimation of combined network equilibrium models with applications to Stockholm. Transp. Sci. 33, 80–100 (1999)CrossRefGoogle Scholar
  2. Akar, G., Clifton, K.J.: Influence of individual perceptions and bicycle infrastructure on decision to bike. Transp. Res. Rec.: J. Transp. Res. Board 2140(1), 165–172 (2009)CrossRefGoogle Scholar
  3. Anas, A.: The estimation of multinomial logit models of joint location and mode choice from aggregated data. J. Reg. Sci. 21, 223–242 (1981)CrossRefGoogle Scholar
  4. Ben-Akiva, M., Bierlaire, M.: Discrete choice methods and their applications to short term travel decisions. Handbook of Transportation Science, pp. 5–33. Springer, US (1999)CrossRefGoogle Scholar
  5. Bekhor, S., Ben-Akiva, M.E., Ramming, M.S.: Evaluation of choice set generation algorithms for route choice models. Ann. Oper. Res. 144(1), 235–247 (2006)CrossRefGoogle Scholar
  6. Bovy, P.H.L., Bekhor, S., Prato, C.G.: The factor of revisited path size: alternative derivation. Transp. Res. Rec. 2076, 132–140 (2008)CrossRefGoogle Scholar
  7. Boyce, D., Bar-Gera, H.: Validation of multiclass urban travel forecasting models combining origin-destination, mode, and route choices. J. Reg. Sci. 43, 517–540 (2003)CrossRefGoogle Scholar
  8. Broach, J., Dill, J., Gliebe, J.: Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A 46, 1730–1740 (2012)Google Scholar
  9. Castillo-Manzano, J.I., Sánchez-Braza, A.: Managing a smart bicycle system when demand outstrips supply: the case of the university community in Seville. Transportation 40(2), 459–477 (2013)CrossRefGoogle Scholar
  10. De Cea, J., Fernandez, J.E., De Grange, L.: Combined models with hierarchical demand choices: a multi-objective entropy optimization approach. Transport Rev. 28, 415–438 (2008)CrossRefGoogle Scholar
  11. DeGruyter, C.: Exploring bicycle level of service in a route choice context. Transport Eng. Aust 9(1), 5–11 (2003)Google Scholar
  12. De Grange, L., Boyce, D., González, F., Ortúzar, J.D.: Integration of spatial correlation into a combined travel model with hierarchical levels. Spat. Econ. Anal. 8, 71–91 (2013)CrossRefGoogle Scholar
  13. Dell’Olio, L., Ibeas, A., Moura, J.L.: Implementing bike-sharing systems. Proc. ICE-Municipal Eng. 164(2), 89–101 (2011)CrossRefGoogle Scholar
  14. Dill, J.: Bicycling for transportation and health: the role of infrastructure. J. Public Health Policy 30, 95–110 (2009)CrossRefGoogle Scholar
  15. Donoso, P., De Grange, L., González, F.: A Maximum entropy estimator for the aggregate hierarchical logit model. Entropy 13, 1425–1445 (2011)CrossRefGoogle Scholar
  16. Florian, M., Wu, J.H., He, S.: A multi-class multi-mode variable demand network equilibrium model with hierarchical logit structures. In: Gendreau, M., Marcotte, P. (eds.) Transportation and Network Analysis: Current Trends, pp. 119–133. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  17. García, R., Marín, A.: Network equilibrium with combined modes: models and solution algorithms. Transp. Res. 39B, 223–254 (2005)CrossRefGoogle Scholar
  18. Garrard, J., Rose, G., Lo, S.K.: Promoting transportation cycling for women: the role of bicycle infrastructure. Prev. Med. 46(1), 55–59 (2008)CrossRefGoogle Scholar
  19. Ham, H., Tschangho, J.K., Boyce, D.: Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows. Transp. Res. 39B, 65–79 (2005)CrossRefGoogle Scholar
  20. Handy, S.L., Xing, Y., Buehler, T.J.: Factors associated with bicycle ownership and use: a study of six small US cities. Transportation 37(6), 967–985 (2010)CrossRefGoogle Scholar
  21. Heinen, E., Van Wee, B., Maat, K.: Commuting by bicycle: an overview of the literature. Transport Rev. 30(1), 59–96 (2010)CrossRefGoogle Scholar
  22. Hood, J., Sall, E., Charlton, B.: A GPS-based bicycle route choice model for San Francisco, California. Transp. Lett. 3(1), 63–75 (2011)CrossRefGoogle Scholar
  23. Hunt, J.D., Abraham, J.E.: Influences on bicycle use. Transportation 34(4), 453–470 (2007)CrossRefGoogle Scholar
  24. Martens, K.: Promoting bike-and-ride: the Dutch experience. Transp. Res. Part A 41(4), 326–338 (2007)Google Scholar
  25. Menghini, G., Carrasco, N., Schüssler, N., Axhausen, K.W.: Route choice of cyclists in Zurich. Transp. Res. Part A 44(9), 754–765 (2010)Google Scholar
  26. Lathia, N., Ahmed, S., Capra, L.: Measuring the impact of opening the London shared bicycle scheme to casual users. Transp. Res. Part C 22, 88–102 (2012)CrossRefGoogle Scholar
  27. Lin, J.R., Yang, T.H.: Strategic design of public bicycle sharing systems with service level constraints. Transp. Res. Part E 47(2), 284–294 (2011)CrossRefGoogle Scholar
  28. Ortúzar, J., Iacobelli, A., Valeze, C.: Estimating demand for a cycle-way network. Transp. Res. 34A, 353–373 (2000)Google Scholar
  29. Ortúzar, J., De, D., Willumsen, L.G.: Modeling Transport. Wiley, Chichester (2011)CrossRefGoogle Scholar
  30. Park, H., Lee, Y.J., Shin, H.C., Sohn, K.: Analyzing the time frame for the transition from leisure-cyclist to commuter-cyclist. Transportation 38(2), 305–319 (2011)CrossRefGoogle Scholar
  31. Parkin, J., Wardman, M., Page, M.: Estimation of the determinants of bicycle mode share for the journey to work using census data. Transportation 35(1), 93–109 (2008)CrossRefGoogle Scholar
  32. Prato, C.G.: Meta-analysis of choice set generation effects on route choice model estimates and predictions. Transport 27(3), 286–298 (2012)CrossRefGoogle Scholar
  33. Pucher, J., Dill, J., Handy, S.: Infrastructure, programs, and policies to increase bicycling: an international review. Prev. Med. 50, S106–S125 (2010)CrossRefGoogle Scholar
  34. Raveau, S., Muñoz, J.C., De Grange, L.: A topological route choice model for metro. Transp. Res. 45A, 138–147 (2011)Google Scholar
  35. Sener, I.N., Eluru, N., Bhat, C.R.: An analysis of bicycle route choice preferences in Texas, US. Transportation 36(5), 511–539 (2009)CrossRefGoogle Scholar
  36. Shaheen, S.: Hangzhou public bicycle: understanding early adoption and behavioral response to bikesharing in Hangzhou, China. Transp. Res. Rec. 2247, 34–41 (2011)CrossRefGoogle Scholar
  37. Shaheen, S., Guzman, S., Zhang, H.: Bikesharing across the globe. In: Pucher, J., Buehler, R. (eds.) City Cycling, pp. 183–209. MIT press, Cambridge (2012)Google Scholar
  38. Stinson, M.A., Bhat, C.R.: Commuter bicyclist route choice: analysis using a stated preference survey. Transp. Res. Rec.: J. Transp. Res. Board 1828(1), 107–115 (2003)CrossRefGoogle Scholar
  39. Van der Zijpp, N.J., Fiorenzo Catalano, S.: Path enumeration by finding the constrained K-shortest paths. Transp. Res. Part B 39(6), 545–563 (2005)CrossRefGoogle Scholar
  40. Winters, M., Teschke, K.: Route preferences among adults in the near market for bicycling: findings of the Cycling in Cities study. Am. J. Health Promot. 25(1), 40–47 (2010)CrossRefGoogle Scholar
  41. Winters, M., Davidson, G., Kao, D., Teschke, K.: Motivators and deterrents of bicycling: comparing influences on decisions to ride. Transportation 38(1), 153–168 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Felipe González
    • 1
  • Carlos Melo-Riquelme
    • 1
  • Louis de Grange
    • 1
  1. 1.Department of Industrial EngineeringDiego Portales UniversitySantiagoChile

Personalised recommendations