Transportation

, Volume 41, Issue 2, pp 279–304 | Cite as

Dynamic process model of mass effects on travel demand

  • Jan-Dirk Schmöcker
  • Tsuyoshi Hatori
  • David Watling
Article

Abstract

Whereas transportation planners commonly predict the negative impacts of mass transportation, there is increasing empirical evidence of the existence of positive mass effects, whereby increased use of a mode by the ‘mass’ will generally increase its attractiveness for future travellers. In this paper we consider the dynamic impact of such an effect on the problem of travel demand forecasting, with particular regards to social network effects. Our proposed modelling approach is inspired by literature from social physics, evolutionary game theory and marketing. For simplicity of exposition, our model is specified for a scenario in which (a) there is a binary choice between two mobility lifestyles, referred to as car-oriented and transit-oriented, and (b) there are two population groups, where one is the “leading” or “innovative” population group and the other the “following” or “imitating” population group. This latter distinction follows the rather well-known Bass model from the marketing literature (1969). We develop the transition probabilities and transition dynamics. We illustrate with a numerical case study that despite lower intrinsic utility for the transit lifestyle, significant changes towards this lifestyle can be achieved by considering congestion, service improvements and mass effects. We further illustrate that mass effects can be positive or negative. In all cases we explore the sensitivity of our conclusions to the assumed parameter values.

Keywords

Mass effects Travel demand Long range forecasting Bass model Social networks Stochastic process model 

References

  1. Abou-Zeid, M., Schmöcker, J.-D., Belgiawan, P.F. and Fujii, S.: Mass effects and mobility decisions. Transp. Lett. Int. J. Transp. Res. 5(3) (2013)Google Scholar
  2. Adams, J.: Smeed’s law: some further thoughts. Traffic Eng. Control 28, 70–73 (1987)Google Scholar
  3. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991)CrossRefGoogle Scholar
  4. Anable, J., Brand, C., Tran, M., Eyre, N.: Modelling transport energy demand: A socio-technical approach. Energy Policy. 41, 125–138 (2012)CrossRefGoogle Scholar
  5. Axhausen, K.W.: Social networks, mobility biographies, and travel: survey challenges. Environ. Plan. B 35, 981–996 (2008)CrossRefGoogle Scholar
  6. Arentze, T., Timmermans, H.: Social networks, social interactions, and activity-travel behaviour: a framework for microsimulation. Environ. Plan. B 35, 1012–1027 (2008)CrossRefGoogle Scholar
  7. Bamberg, S., Fujii, S., Friman, M., Gärling, T.: Behaviour theory and soft transport policy measures. Transp. Policy 18(1), 228–235 (2011)CrossRefGoogle Scholar
  8. Bartle, C.: Spreading the Word, A social-psychological exploration of word-of-mouth traveller information in the digital age. PhD Thesis, University of West of England. Available from http://www.transport.uwe.ac.uk/reports/bartle_2011_thesis.pdf (2011). Accessed April 2012
  9. Bass, F.M.: A new product growth for model consumer durables. Manag. Sci. vol. 50, No. 12 Supplement, Dec 2004, 1825–1832. (1969)Google Scholar
  10. Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis: Theory and Applications to Travel Demand. MIT Press, London (1985)Google Scholar
  11. Berechman, J., Giuliano, G.: Economies of scale in bus transit: A review of concepts and evidence. Transportation 12, 313–332 (1985)CrossRefGoogle Scholar
  12. Blickstein, S., Hanson, S.: Critical mass: forging a politics of sustainable mobility in the information age. Transportation 28, 347–362 (2001)CrossRefGoogle Scholar
  13. Bordley, R.F.: The dogit model is applicable even without perfectly captive buyers. Transp. Res. B 24(4), 315–323 (1990)CrossRefGoogle Scholar
  14. Boyce, D.E., Williams, H.C.W.L.: Urban Travel Forecasting in the USA and the UK. In: Reggiani, A., Schintler, L. (eds.) Methods and Models in Transport and Telecommunications: Cross Atlantic Perspectives, 2005th edn, pp. 25–44. Springer, Berlin (2003)Google Scholar
  15. Broach, J., Dill, J. and Gliebe, J.: Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. A. 46(10), 1730–1740 (2012)Google Scholar
  16. Brock, W.A., Durlauf, S.N.: Discrete choice with social interactons. Rev. Econ. Stud. 68, 235–260 (2001)CrossRefGoogle Scholar
  17. Cairns, S., Sloman, L., Newson, C., Anable, J., Kirkbride, A., Goodwin, P.: Smarter choices: assessing the potential to achieve traffic reduction using ‘soft measures’. Transport Reviews 28(5), 593–618 (2008)CrossRefGoogle Scholar
  18. Cantarella, G.E., Cascetta, E.: Dynamic process and equilibrium in transportation networks: towards a unifying theory. Transp. Sci. 29, 305–329 (1995)CrossRefGoogle Scholar
  19. Cantarella, G.E., Velonà, P., Watling, D.P.: Day-to-day dynamics and equilibrium stability in a two-mode transport system with responsive bus operator strategies. (2012, Submitted for publication)Google Scholar
  20. Cantner U., Krüger, J., Söllner, R.: Product quality, product price and share dynamics in the German compact car market. Jena Econ. Res. Pap. 024-2010. (2010)Google Scholar
  21. Cao, X., Mokhtarian, P.L., Handy, S.L.: No particular place to go: an empirical analysis of travel for the sake of travel. Environ. Behav. 41, 233–257 (2009)Google Scholar
  22. Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.: Collecting social network data to study social activity-travel behavior: an egocentric approach. Environ. Plan. B Plan. Des. 35, 961–980 (2008)CrossRefGoogle Scholar
  23. Cho, G., Rodríguez, D.A., Khattak, A.J.: The role of the built environment in explaining relationships between perceived and actual pedestrian and bicyclist safety. Accid. Anal. Prev. 41, 692–702 (2009)CrossRefGoogle Scholar
  24. Clarke, M., Dix, M., Goodwin, P.: Some issues of dynamics in forecasting travel behaviour: a discussion paper. Transportation 11, 153–172 (1982)CrossRefGoogle Scholar
  25. Department for Transport: Behavioural Insights Toolkit. Produced by Social Research and Evaluation division. http://assets.dft.gov.uk/publications/behavioural-insights-toolkit/toolkit.pdf (2011). Accessed Oct 2012
  26. Di Giacomo, M., Ottoz, E.: The relevance of scale and scope economies in the provision of urban and intercity bus transport. J. Transp. Econ. Policy 44, 161–187 (2010)Google Scholar
  27. Ewing, R.: Using a visual preference survey in transit design. Public Works Manag. Policy 5, 270–280 (2001)CrossRefGoogle Scholar
  28. Ewing, R., King, M.R., Raudenbush, S., Clemente, O.J.: Turning highways into main streets: two innovations in planning methodology. J. Am. Plan. Assoc. 71, 269–282 (2005)CrossRefGoogle Scholar
  29. Farsi, M., Fetz, A., Filippini, M.: Economies of scale and scope in local public transportation. J. Transp. Econ. Policy 41, 345–361 (2007)Google Scholar
  30. Frank, R.: Positional externalities cause large and preventable welfare losses. Am. Econ. Rev. 95(2), 137–141 (2005)CrossRefGoogle Scholar
  31. Fudenberg, D., Levine, D.K.: Theory of learning in games. MIT Press, Cambridge, Mass (1998)Google Scholar
  32. Fukuda, D., Morichi, S.: Incorporating aggregate behaviour in an individual’s discrete choice: An application to analysing illegal bicyle parking behaviour. Transp. Res. A 41, 313–325 (2007)Google Scholar
  33. Garrod, G.D., Scarpa, R., Willis, K.G.: Estimating the benefits of traffic calming on through routes: a choice experiment approach. J. Transp. Econ. Policy 36, 211–231 (2002)Google Scholar
  34. Goetzke, F., Rave, T.: Bicycle use in Germany: explaining differences between municipalities with social network effects. Urban Stud. 48(2), 427–437 (2011)CrossRefGoogle Scholar
  35. Goldstein, J.H., Cialdini, R.J., Griskevicius, V.: A room with a viewpoint: using social norms to motivate environmental conservation in hotels. J. Consum. Res. 35(3), 472–482 (2008)CrossRefGoogle Scholar
  36. Hensher, D., Chung, D.: Road infrastructure and institutional reform: tolling and pricing. In: Finger, M., Künneke, R.W. (eds.) International Handbook of Network Industries, pp. 252–268. Edward Elgar Publishing, Cheltenham (2011)Google Scholar
  37. Herrera, J.C., Work, D.B., Herring, R., Ban, X., Jacobson, Q., Bayen, A.M.: Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field experiment. Transp. Res. C 18, 568–583 (2010)CrossRefGoogle Scholar
  38. Hofbauer, J., Sandholm, W.H.: On the global convergence of stochastic fictitious play. Econometrica. 70, 2265–2294 (2002)Google Scholar
  39. Hofbauer, J., Sandholm, W.H.: Evolution in games with randomly disturbed payoffs. J. Econ. Theory. 132, 47–69 (2007)Google Scholar
  40. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40, 479–519 (2003)CrossRefGoogle Scholar
  41. Jacobsen, P.L.: Safety in numbers: more walkers and bicyclists, safer walking and bicycling. Inj. Prev. 9, 205–209 (2003)CrossRefGoogle Scholar
  42. Jalilvand, M.R., Esfahani, S.S., Samiei, N.: Electronic word-of-mouth: challenges and opportunities. Procedia Comput. Sci. 3, 42–46 (2011)CrossRefGoogle Scholar
  43. Leden, L.: Pedestrian risk decreases with pedestrian flow. A case study based on data from signalized intersections in Hamilton Ontario. Accid. Anal. Prev. 34, 457–464 (2002)CrossRefGoogle Scholar
  44. Maccheroni, F., Marinacci, M., Rustichini, A.: Social decision theory: choosing within and between groups. Rev. Econ. Stud. 79, 1591–1636 (2012)Google Scholar
  45. Mahajan, V., Muller, E., Srivastava, R.K.: New product diffusion models in marketing: a review and directions for research. J. Mark. 54(1), 1–26 (1990)CrossRefGoogle Scholar
  46. Manrai, L.A., Manrai, A.K.: Effects of cultural-context, gender, and acculturation on perceptions of work versus social/leisure time usage. J. Bus. Res. 32(2), 115–128 (1995)CrossRefGoogle Scholar
  47. Manski, C.F.: Social learning from private experiences: the dynamics of the selection problem. Rev. Econ. Stud. 71, 443–458 (2004)CrossRefGoogle Scholar
  48. McCarthy, P.: Effect of speed limits on speed distributions and highway safety: a survey of recent literature. Transp. Rev. 21, 31–50 (2001)CrossRefGoogle Scholar
  49. Mohring, H.: Optimization and scale economies in urban bus transportation. Am. Econ. Rev. 62, 591–604 (1972)Google Scholar
  50. Nakajima, R.: Measuring peer effects on youth smoking behaviour. Rev. Econ. Stud. 74, 897–935 (2007)CrossRefGoogle Scholar
  51. Nakayama, S., Nakayama, Y.: A fashion model with social interaction. Phys. A 337, 625–634 (2004)CrossRefGoogle Scholar
  52. Ngoduy, D., Watling, D., Timms, P., Tight, M.: Dynamic Bayesian belief network to model the development of walking and cycling schemes. Int. J. Sustain. Transp. 7(5), 366–388 (2013)CrossRefGoogle Scholar
  53. Nyborg, K., Rege, M.: On social norms: the evolution of considerate smoking behavior. J. Econ. Behav. Organ. 52(3), 323–340 (2003)CrossRefGoogle Scholar
  54. Páez, A., Scott, D.M.: Social influence on travel behavior: a simulation example of the decision to telecommute. Environ. Plan. A 39, 647–665 (2007)CrossRefGoogle Scholar
  55. Richter, J., Friman, M., Gärling, T.: Soft transport policy measures. gaps in knowledge. Int. J. Sustain. Transp. 5(4), 199–215 (2011)CrossRefGoogle Scholar
  56. Robinson, D.: Safety in numbers in Australia: more walkers and bicyclists, safer walking and cycling. Health Promot. J. Aust. 16, 47–51 (2005)Google Scholar
  57. Safarzynska, K., van den Bergh, J.C.J.M.: Beyond replicator dynamics: innovation-selection dynamics and optimal diversity. J. Econ. Behav. Organ. 78, 229–245 (2011)Google Scholar
  58. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press, Cambridge (2011)Google Scholar
  59. Sethi, R., Somanathan, E.: The evolution of social norms in common property resource use. Am. Econ. Rev. 86(4), 766–789 (1996)Google Scholar
  60. Shladover, S.E., Polatkan, G., Sengupta, R., Van der Werf, J., Ergen, M., Bougler, B.: Dependence of cooperative vehicle system performance on market penetration. Transp. Res. Rec. 2000, 121–127 (2007)CrossRefGoogle Scholar
  61. Smeed, R.J.: Some statistical aspects of road safety research. J. Royal Stat. Soc. A 112, 1–34 (1949)CrossRefGoogle Scholar
  62. Stopher, P.R.: Reducing road congestion: a reality check. Transp. Policy 11(2), 117–131 (2004)CrossRefGoogle Scholar
  63. Sparks, B.A., Browning, V.: The impact of online reviews on hotel booking intentions and perception of trust. Tour. Manag. 32, 1310–1323 (2011)CrossRefGoogle Scholar
  64. Sunitiyoso, Y., Avineri, E., Chatterjee, K.: The effect of social interactions on travel behaviour: An exploratory study using a laboratory experiment. Transp. Res. Part A 45(1), 332–345 (2011a)Google Scholar
  65. Sunitiyoso, Y., Avineri, E., Chatterjee, K.: On the potential for recognising of social interaction and social learning in modelling travellers’ change of behaviour under uncertainty. Transportmetrica 7(1), 5–30 (2011b)CrossRefGoogle Scholar
  66. Thørgersen, J.: Social marketing of alternative transportation modes, Chapter 23. In: Gärling, T., Steg, L. (eds.) Threats from Car Traffic to the Quality of Urban Life, pp. 367–382. Elsevier, Amsterdam (2007)Google Scholar
  67. Topa, G.: Social interactions, local spillovers and unemployment. Rev. Econ. Stud. 68, 261–295 (2001)CrossRefGoogle Scholar
  68. Wahlgren, L., Schantz, P.: Exploring bikeability in a metropolitan setting: stimulating and hindering factors in commuting route environments. BMC Public Health 12, 168 (2012)CrossRefGoogle Scholar
  69. Walker, J.L., Ehlers, E., Banerjee, I., Dugundji, E.R.: Correcting for endogeneity in behavioral choice models with social influence variables. Transp. Res. Part A 45(4), 362–374 (2011)Google Scholar
  70. Watling, D.: Dynamic Process Models for Long-Range Transportation Planning. Presented at DTA2010, the 3rd International Symposium on Dynamic Traffic Assignment, Takayama, Japan, 29–31 July 2010Google Scholar
  71. Weidlich, R.: Sociodynamics. Dover Publications, Mineola (2000)Google Scholar
  72. Weinberger, R., Goetzke, F.: Drivers of Auto Ownership: The Role of Past Experience and Peer Pressure. In: Lucas, K., Blumenberg, E., Weinberge, R. (eds.) Auto Motives—Understanding Car Use Behaviours. Emerald Group Publishing, Bingley (2011)Google Scholar
  73. Whelan, G.: Modelling car ownership in Great Britain. Transp. Res. A 41, 205–219 (2007)Google Scholar
  74. Yang, F., Zhang, D.: Day-to-day stationary link flow pattern. Transp. Res. Part B. 43, 119–126 (2009)Google Scholar
  75. Zhang, Y., Stopher, P. and Halling, B.: Evaluation of south-Australia’s TravelSmart project: Changes in community’s attitudes to travel. Transp. Policy. (2012, In press)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jan-Dirk Schmöcker
    • 1
  • Tsuyoshi Hatori
    • 2
  • David Watling
    • 3
  1. 1.Department of Urban ManagementKyoto UniversityKyotoJapan
  2. 2.Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
  3. 3.Institute for Transport Studies, University of LeedsLeedsUK

Personalised recommendations