Population Research and Policy Review

, Volume 36, Issue 6, pp 871–901 | Cite as

An Alternative to Fixed Transition Probabilities for the Projection of Interprovincial Migration in Canada

Original Research

Abstract

Internal migration plays a critical role in subnational population projections. The multiregional model is often seen as a gold standard, for its capacity to project several interconnected regions simultaneously and coherently. However, undesirable effects may occur when assumptions of constant transition probabilities are used. This paper investigates these limits, explores a few solutions provided in the literature and describes the alternative methodology used by Statistics Canada in its most recent edition of population projections for the Canadian provinces and territories. Among other things, the new method is shown to improve the consistency between internal migration assumptions and results and to facilitate the projection of the uncertainty associated with this component.

Keywords

Internal migration Projections Canada Multiregional  Interprovincial migration 

References

  1. Australian Bureau of Statistics. (1999). Demographic estimates and projections: Concepts, sources and methods. http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/34CA87DD7DF0A521CA25697E0018FB45?-opendocument. Cited October 19, 2016.
  2. Barentsen, W. & Nijkamp, P. (1986). Modeling non-linear processes in time and space. Research Memorandum 1986-50. In Paper presented at the International Summer Institute on regional dynamics, Umea, Sweden.Google Scholar
  3. Bijak, J. (2010). Forecasting international migration in Europe: A Bayesian view. Dordrecht: Springer, p. 308.Google Scholar
  4. Blanchet, D. (1998). Nonlinear demographic models and chaotic demo-dynamics. Population: An English Selection, 10(1), 139–150.Google Scholar
  5. Courgeau, D. (1991). Perspectives avec migrations. Population, 46(6), 1513–1530.CrossRefGoogle Scholar
  6. Dion, P. (2011). Migrations secondaires des nouveaux immigrants au cours de leurs quatre premières années au Canada: motivations et trajectoires. Cahiers Québécois de Démographie, 39(2), 243–273.CrossRefGoogle Scholar
  7. Dion, P. (2014). Chapter 8: Projection of interprovincial migration. In Statistics Canada. Population projections for Canada (2013 to 2063), provinces and territories (2013 to 2038). Technical report on methodology and assumptions, Catalogue no. 91-620.Google Scholar
  8. Dion, P., & Galbraith, N. (2015). A review of forty years of population projections at Statistics Canada. Canadian Studies in Population, 42(1–2), 102–116.CrossRefGoogle Scholar
  9. Dorigo, G., & Tobler, W. (1983). Push–pull migration laws. Annals of the Association of American Geographers, 73(1), 1–17.CrossRefGoogle Scholar
  10. Feeney, G. (1973). Two models for multiregional population dynamics. Environment and Planning, 5, 31–43.CrossRefGoogle Scholar
  11. Gale, S. (1973). Explanation theory and models of migration. Economic Geography, 49(3), 257–274.CrossRefGoogle Scholar
  12. Ginsberg, R. B. (1972). Critique of probabilistic models: Application of the semi-Markov model to migration. Journal of Mathematical Sociology, 2, 63–82.CrossRefGoogle Scholar
  13. Haag, G., & Weidlich, W. (1984). A stochastic theory of interregional migration. Geographical Analysis, 16(4), 331–357.CrossRefGoogle Scholar
  14. Harary, F., Lipstein, B., & Styan, G. P. H. (1970). A matrix approach to nonstationary chains. Operations Research, 18(6), 1168–1181.CrossRefGoogle Scholar
  15. Hierro, M. (2009). Modelling the dynamics of internal migrations flows in Spain. Papers in Regional Science, 88(3), 682–683.CrossRefGoogle Scholar
  16. Isserman, A. (1992). The right people, the right rates: Making population estimates and forecasts with an interregional cohort-component model. Research paper 9216. West Virginia University. http://www.rri.wvu.edu/pdffiles/wp9216.pdf.
  17. Isserman, A., Plane, D. A., Rogerson, P. A., & Beaumont, P. M. (1985). Forecasting interstate migration with limited data: A demographic-economic approach. Journal of the American Statistical Association, 80(390), 277–285.CrossRefGoogle Scholar
  18. Lachapelle, R. (1977). Prévisions démographiques et processus de décision. Cahiers Québécois de Démographie, 6(3), 267–279.CrossRefGoogle Scholar
  19. Le Bras, H. (2008). The nature of demography. Princeton, NJ: Princeton University Press.Google Scholar
  20. Ledent, J. (1983a). Une analyse log-linéaire des courants migratoires interprovinciaux: Canada, 1961–1983. Cahiers Québécois de Démographie, 12(2), 223–250.CrossRefGoogle Scholar
  21. Ledent, J. (1983b). La dynamique des systèmes démographiques multirégionaux: le cas d’un modèle non-linéaire de migration. La Revue Canadienne des Sciences Régionales, VI(2), 157–183.Google Scholar
  22. Lowry, I. S. (1966). Migration and metropolitan growth: Two analytical models. San Francisco: Chandler.Google Scholar
  23. Makridakis, S, Hogarth, R. M., & Gaba, A. (2009). Forecasting and uncertainty in the economic and business world. International Journal of Forecasting, 25, 794–812.CrossRefGoogle Scholar
  24. Massey, D. (1990). Social structure, household strategies and the cumulative causation of migration. Population Index, 56(1), 3–26.CrossRefGoogle Scholar
  25. May, R. M. (1976). Simple models with very complicated dynamics. Nature, 261, 459–467.CrossRefGoogle Scholar
  26. Office of National Statistics. (2015). Migration assumptions, 2014-based national population projections. http://www.ons.gov.uk/ons/rel/npp/national-population-projections/2014-based-projections/rpt-5-migration-assumptions.html#tab-Migration-assumptions-data-and-methodology. Cited November 30, 2015.
  27. Pittenger, D. B. (1978). On making flexible projections of age-specific net. Environment and Planning A, 10, 1253–1272.CrossRefGoogle Scholar
  28. Plane, D. A. (1982). An information-theoretic approach to the estimation of migration flows. Journal of Regional Science, 22(4), 441–456.CrossRefGoogle Scholar
  29. Plane, D. A. (1993). Requiem for the fixed-transition-probability migrant. Geographical Analysis, 25(3), 211–223.CrossRefGoogle Scholar
  30. Plane, D. A., & Rogerson, P. A. (1986). Dynamic flow modeling with interregional dependency effects: An application to structural change in the US migration system. Demography, 23, 91–104.CrossRefGoogle Scholar
  31. Plane, D. A., & Rogerson, P. A. (1994). The geographical analysis of population with applications to planning and business. New York: Wiley.Google Scholar
  32. Poulain, M. (1982). L’analyse spatiale d’une matrice de migration interne: l’exemple des migrations interprovinciales de six provinces du Canada pour les périodes 1956–1961, 1966–1971 et 1971–1976. Cahiers Québécois de Démographie, 11(1), 47–68.CrossRefGoogle Scholar
  33. Raymer, J., Abel, G., & Rogers, A. (2012). Does specification matter? Experiments with simple multiregional probabilistic population projections. Environment and Planning, 44(11), 2664–2686. doi:10.1068/a4533.CrossRefGoogle Scholar
  34. Rees, P., Wohland, P., Norman, P., & Lomax, N. (2015). Sub-national projection methods for Scotland and Scottish areas: A review and recommendations. A Consultancy for National Records of Scotland, Edinburgh. http://www.nrscotland.gov.uk/files/statistics/consultation-groups/psg-19-08-15/paper1annexa-psg-19-08-15-snpp-academic-report.pdf. Cited October 16, 2016.
  35. Rogers, A. (1967). A regression analysis of interregional migration in California. The Review of Economics and Statistics, 49(2), 262–267.CrossRefGoogle Scholar
  36. Rogers, A. (1990). Requiem for the net migrant. Geographical Analysis, 22(4), 283–300.CrossRefGoogle Scholar
  37. Rogerson, P. (1984). New directions in the modeling of interregional migration. Economic Geography, 60, 111–121.CrossRefGoogle Scholar
  38. Romaniuk, A. (2010). Population forecasting: Epistemological considerations. Genus, LXVI(1), 91–108.Google Scholar
  39. Rogers, A., Willekens, F. J., Little, J. S., & Raymer, J. (2002). Describing migration spatial structure. Papers in Regional Science, 81, 29–48.CrossRefGoogle Scholar
  40. Saajstad, L. A. (1962). The costs and returns of human migration. Journal of Political Economy, 70S, 80–93.CrossRefGoogle Scholar
  41. Simmons, J. W. (1980). Changing migration patterns in Canada 1966–1971 to 1971–1976. Canadian Journal of Regional Science III, 2, 139–162.Google Scholar
  42. Smith, S. (1986). Accounting for migration in cohort-component projections of state and local populations. Demography, 23(1), 127–135.CrossRefGoogle Scholar
  43. Snickars, F., & Weibull, J. W. (1977). A minimum information principle: Theory and practice. Regional Science and Urban Economics, 7, 137–168.CrossRefGoogle Scholar
  44. Stillwell, J. (2005). Inter-regional migration modelling: A review and assessment. Paper prepared for the 45th Congress of the European Regional Science Association, Vrije, Universiteit Amsterdam, The Netherlands, 23–27 August 2005.Google Scholar
  45. Sweeney, S. H., & Konty, K. J. (2002). Population forecasting with nonstationary multiregional growth matrices. Geographical Analysis, 34(4), 289–312.CrossRefGoogle Scholar
  46. Termote, M. G., & Fréchette, R. (1980). Le renversement récent des courants migratoires entre les provinces canadiennes, essai d’interprétation. Canadian Journal of Regional Science, 3(2), 163–192.Google Scholar
  47. Tetlock, P. E. & Gardner, D. (2015). Superforecasting: The art and science of prediction. Random House. p. 352.Google Scholar
  48. Todaro, M. P. (1969). A model of labor migration and urban unemployment in less-developed countries. American Economic Review, 59, 138–148.Google Scholar
  49. United Nations. (1992). Preparing migration data for subnational population projections. New York: Department of International Economic and Social Affairs.Google Scholar
  50. Vanderkamp, J. (1976). The role of population size in migration studies. The Canadian Journal of Economics, 9(3), 508–517.CrossRefGoogle Scholar
  51. Werschler, T., & Nault, F. (1996). Projecting interregional migration balances within a multiregional cohort-component framework. Environment and Planning A, 58, 769–782.CrossRefGoogle Scholar
  52. Willekens F. J. (1992). National population forecasting: State of the art and research needs. In N. Keilman & H. Cruijsen (Eds), National population forecasting (pp. 283–322). Netherlands Interdisciplinary Demographic Institute. Swets and Zeitlinger.Google Scholar
  53. Wilson, T. (2016). Evaluation of alternative cohort-component models for local area population forecasts. Population Research and Policy Review, 35, 241–261.CrossRefGoogle Scholar
  54. Wilson, T., & Bell, M. (2004). Comparative empirical evaluations of internal migration models in subnational population projections. Journal of Population Research, 21(2), 127–160.CrossRefGoogle Scholar
  55. Wilson, T. & Rees, P. (2005). Recent developments in population projection methodology: A review. Population, Space and Place, 11(5), 337–360.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Statistics CanadaOttawaCanada

Personalised recommendations