Population Research and Policy Review

, Volume 29, Issue 6, pp 865–891

Birth Outcome Measures and Infant Mortality



Recent studies have proposed alternative birth outcome measures as means of assessing infant mortality risk; nevertheless, there hasn’t yet been an integrated analysis of these approaches. We review 14 strategies, including various combinations of birth weight, gestational age, fetal growth rate, and Apgar scores—as predictors of early neonatal, late neonatal, and postneonatal mortality, and infant mortality. Using the NCHS linked birth/infant death file for 2001, we construct multivariate logit models and assess the associations between each of the 14 key birth outcome measures and four mortality outcomes. We find that all evaluated birth outcome measures are strong predictors, but Apgar scores are the strongest among all models for all outcomes, independent of birth weight and gestational age. Apgar scores’ predictive power is stronger for Mexican-, white-, and female-infants than for black- and male-infants. Second, all birth outcome measures remain significantly associated with mortality, but their predictive power reduces drastically over time. These findings suggest a rule of thumb for predicting infant mortality odds: when available, Apgar scores should always be included along with birth weight (or LBW status) and gestational age. Additionally, these findings argue for the continued study of low birthweight, gestational age, and Apgar scores as independently salient health outcomes.


Birth outcome measures Birth weight Low birth weight (LBW) Gestational age Infant mortality 


  1. Abrevaya, J. (2001). The effects of demographics and maternal behavior on the distribution of birth outcomes. Empirical Economics, 26, 247–257.CrossRefGoogle Scholar
  2. Allison, P. (2001). Missing data. Thousand Oaks, CA: Sage.Google Scholar
  3. Almond, D., Chay, K. Y., & Lee, D. S. (2005). The costs of low birth weight. The Quarterly Journal of Economics, 120(3), 1031–1083.CrossRefGoogle Scholar
  4. Balcazar, H. (1994). The prevalence of intrauterine growth retardation in Mexican Americans. AJPH, 84, 462–465.CrossRefGoogle Scholar
  5. Barker, D. J. P., Eriksson, J. G., Forsén, T., & Osmond, C. (2002). Fetal origins of adult disease: Strength of effects and biological basis. International Journal of Epidemiology, 31, 1235–1239.CrossRefGoogle Scholar
  6. Callaghan, W. M., MacDorman, M. F., Rasmussen, S. A., Qin, C., & Lackritz, E. M. (2006). The contribution of preterm birth to infant mortality rates in the United States. Pediatrics, 118(4), 1566–1573.CrossRefGoogle Scholar
  7. Casey, B. M., McIntire, D. D., & Leveno, K. J. (2001). The continuing value of the Apgar score for the assessment of newborn infants. New England Journal of Medicine, 344(7), 467–471.CrossRefGoogle Scholar
  8. Cunningham, F. G., MacDonald, P. C., Gant, N. F., et al. (1997). Fetal growth restriction. Williams obstetrics (20th ed., pp. 839–854). Stamford, CT: Appleton & Lange.Google Scholar
  9. Doyle, M. J., Echevarria, S., & Frisbie, W. P. (2003). Race/ethnicity, Apgar and infant mortality. Population Research and Policy Review, 22(1), 41–64.CrossRefGoogle Scholar
  10. Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C., & Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: Longitudinal study. BMJ, 322(7292), 949–953.CrossRefGoogle Scholar
  11. Finch, B. K. (2003a). Socioeconomic gradients and low birth-weight: Empirical and policy considerations. Health Services Research, 38(6 Pt 2), 1819–1841.CrossRefGoogle Scholar
  12. Finch, B. K. (2003b). Early origins of the gradient: The relationship between socio-economic status and infant mortality in the United States. Demography, 40(4), 675–699.CrossRefGoogle Scholar
  13. Forsén, T., Eriksson, J., Tuomilehto, J., Reunanen, A., Osmond, C., & Barker, D. (2000). The fetal and childhood growth of persons who develop type 2 diabetes. Annals of Internal Medicine, 133, 176–182.Google Scholar
  14. Frisbie, W. P., Forbes, D., & Pullum, S. G. (1996). Compromised birth outcomes and infant mortality among racial and ethnic groups. Demography, 33(4), 469–481.CrossRefGoogle Scholar
  15. Frisbie, W. P., Song, S. E., Powers, D. A., & Street, J. A. (2004). The increasing racial disparity in infant mortality: Respiratory distress syndrome and other causes. Demography, 41(4), 773–800.CrossRefGoogle Scholar
  16. Gjessing, H. K., Skjaerven, R., & Wilcox, A. J. (1999). Errors in gestational age: Evidence of bleeding early in pregnancy. American Journal of Public Health, 89(2), 213–218.CrossRefGoogle Scholar
  17. Haas, J. D., Balcazar, H., & Caulfield, L. (1987). Variation in early neonatal mortality for different types of fetal growth retardation. American Journal of Physical Anthropology, 73, 467–473.CrossRefGoogle Scholar
  18. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer (Chap. 7).Google Scholar
  19. Hegyi, T., Carbone, T., Anwar, M., Ostfeld, B., Hiatt, M., Koons, A., et al. (1998). The Apgar score and its components in the preterm infant. Pediatrics, 101, 77–81.CrossRefGoogle Scholar
  20. Hessol, N. A., & Fuentes-Afflick, E. (2005). Ethnic differences in neonatal and postneonatal mortality. Pediatrics, 115(1), e44–e51.Google Scholar
  21. Hessol, N. A., Fuentes-Afflick, E., & Bacchetti, P. (1998). Risk of low birth weight infants among black and white parents. Obstetrics and Gynecology, 92(5), 814–822.CrossRefGoogle Scholar
  22. Hoekelman, R. A., & Pless, I. B. (1988). Decline in mortality among young Americans during the 20th century: Prospects for reaching national mortality reduction goals for 1990. Pediatrics, 82, 582–595.Google Scholar
  23. Hummer, R. A., Biegler, M., De Turk, P. B., Forbes, D., Frisbie, W. P., Hong, Y., et al. (1999). Race/ethnicity, nativity, and infant mortality in the United States. Social Forces, 77(3), 1083–1117.CrossRefGoogle Scholar
  24. Joseph, K. S., Wilkins, R., Dodds, L., Allen, V. M., Ohlsson, A., Marcoux, S., et al. (2005). Customized birth weight for gestational age standards: Perinatal mortality patterns are consistent with separate standards for males and females but not for blacks and whites. BMC Pregnancy and Childbirth, 5(3), 1–14.Google Scholar
  25. Kempe, A., Wise, P. H., Wampler, N. S., Cole, F. S., Wallace, H., Dickinson, C., et al. (1997). Risk status at discharge and cause of death for postneonatal infant deaths: A total population study. Pediatrics, 99(3), 338–344.CrossRefGoogle Scholar
  26. Kiely, J., Brett, K., Yu, S., & Rowley, D. (1995). Low birth weight and intrauterine growth retardation. In L. Wilcox & J. Marks (Eds.), From data to action: CDC’s public health surveillance for women, infants, and children (pp. 185–202). Atlanta: USDHHS, CDC.Google Scholar
  27. Kleinman, J. C., & Kessel, S. S. (1987). Racial differences in low birth weight. Trends and risk factors. New England Journal of Medicine, 317, 749–753.Google Scholar
  28. Kotelchuck, M. (1994a). An evaluation of the Kessner Adequacy of Prenatal Care Index and a proposed Adequacy of Prenatal Care Utilization Index. American Journal of Public Health, 84(9), 1414–1420.CrossRefGoogle Scholar
  29. Kotelchuck, M. (1994b). The Adequacy of Prenatal Care Utilization Index: Its US distribution and association with low birthweight. American Journal of Public Health, 84(9), 1486–1489.CrossRefGoogle Scholar
  30. Kramer, M. S. (1987). Determinants of low birth weight: Methodological assessment and meta-analysis. Bulletin of World Health Organization, 65, 663–737.Google Scholar
  31. Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance. Sociological methods research, 33, 188–229.CrossRefGoogle Scholar
  32. Luke, B., & Brown, M. B. (2006). The changing risk of infant mortality by gestation, plurality, and race: 1989–1991 versus 1999–2001. Pediatrics, 118(6), 2488–2497.CrossRefGoogle Scholar
  33. Martin, J. A., Hamilton, B. E., Sutton, P. D., Ventura, S. J., Menacker, F., & Munson, M. L. (2003). Births: Final data for 2002. National Vital Statistics Reports, 52(10). Hyattsville, MD: National Center for Health Statistics. Accessed January 1, 2009, from http://www.cdc.gov/nchs/data/nvsr/nvsr52/nvsr52_10.pdf.
  34. Mathews, T. J., Menacker, F., & MacDorman, M. F. (2003). Infant mortality statistics from the 2001 period linked birth/infant death data set. National Vital Statistics Reports, 52(2), 1–28.Google Scholar
  35. Miller, J. (1994). Birth order, interpregnancy intervals and birth outcomes and Filipino infants. Journal of Biosocial Sciences, 26, 243–259.CrossRefGoogle Scholar
  36. National Center for Health Statistics. (2001a). Linked birth/infant death data set—2001 denominator record and natality section of numerator (linked) record. Accessed January 1, 2009, from http://wonder.cdc.gov/wonder/sci_data/natal/linked/type_txt/lbd01/Recordlayout01.pdf.
  37. National Center for Health Statistics. (2001b). Technical appendix-fetal death 2001. Accessed January 1, 2009, from http://wonder.cdc.gov/wonder/sci_data/mort/fetldeth/type_txt/fetal01/tafetaldeath01.pdf.
  38. National Center for Health Statistics. (2006). Health, United States, 2006 with chartbook on trends in the health of americans. Hyattsville, MD.Google Scholar
  39. Paneth, N. (1995). The problem of low birth weight. Future Child, 5(1), 19–34.CrossRefGoogle Scholar
  40. Papile, L. (2001). The Apgar score in the 21st century [Editorial]. New England Journal of Medicine, 344, 519–520.CrossRefGoogle Scholar
  41. Petrikovsky, B. M., Diana, L., & Baker, D. A. (1990). Race and Apgar scores [Correspondence]. Anesthesia, 45, 988–999.CrossRefGoogle Scholar
  42. Powers, D. A., Frisbie, W. P., Hummer, R. A., Pullum, S. G., & Solis, P. (2006). Race/ethnic differences and age-variation in the effects of birth outcomes on infant mortality in the U.S. Demographic Research, 14, 179–216.CrossRefGoogle Scholar
  43. Reichman, N. E., & Teitler, J. O. (2006). Paternal age as a risk factor for low birthweight. American Journal of Public Health, 96(5), 862–866.CrossRefGoogle Scholar
  44. Rogers, R. G. (1989). Ethnic and birth weight differences in cause-specific infant mortality. Demography, 26(2), 335–343.CrossRefGoogle Scholar
  45. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  46. Solis, P., Pullum, S. G., & Frisbie, W. P. (2000). Demographic models of birth outcomes and infant mortality: An alternative measurement approach. Demography, 37(4), 489–498.CrossRefGoogle Scholar
  47. StataCorp. (2005). Stata statistical software: Release 9 (Vol. 1–3, pp. 330–331). College Station, TX: StataCorp LP.Google Scholar
  48. Umbach, D. M., & Wilcox, A. J. (1996) A technique for measuring epidemiologically useful features of birth weight distributions. Statistics in Medicine, 15, 1333–1348.CrossRefGoogle Scholar
  49. Weinberger, B., Anwar, M., Hegyi, T., Hiatt, M., Koons, A., & Paneth, N. (2000). Antecedents and neonatal consequences of low Apgar scores in preterm newborns: A population study. Archives of Pediatrics and Adolescent Medicine, 154(3), 294–300.Google Scholar
  50. Wilcox, A. J. (2001). On the importance—and the unimportance—of birthweight. International Journal of Epidemiology, 30, 1233–1241.CrossRefGoogle Scholar
  51. Wilcox, A. J., & Russell, I. T. (1986). Birthweight and perinatal mortality: III. Towards a new method of analysis. International Journal of Epidemiology, 15(2), 188–196.CrossRefGoogle Scholar
  52. Wilcox, A. J., & Skjaerven, R. (1992). Birth weight and perinatal mortality: The effect of gestational age. American Journal of Public Health, 82(3), 378–382.CrossRefGoogle Scholar
  53. Yama, A. Z., & Marx, G. F. (1991). Race and Apgar scores. Anesthesia, 46, 330–331.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Population, Family and Reproductive HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Department of SociologySan Diego State UniversitySan DiegoUSA

Personalised recommendations