Advertisement

Population Research and Policy Review

, Volume 27, Issue 1, pp 17–42 | Cite as

Spatial Regression Models for Demographic Analysis

  • Guangqing ChiEmail author
  • Jun Zhu
Article

Abstract

While spatial data analysis has received increasing attention in demographic studies, it remains a difficult subject to learn for practitioners due to its complexity and various unresolved issues. Here we give a practical guide to spatial demographic analysis, with a focus on the use of spatial regression models. We first summarize spatially explicit and implicit theories of population dynamics. We then describe basic concepts in exploratory spatial data analysis and spatial regression modeling through an illustration of population change in the 1990s at the minor civil division level in the state of Wisconsin. We also review spatial regression models including spatial lag models, spatial error models, and spatial autoregressive moving average models and use these models for analyzing the data example. We finally suggest opportunities and directions for future research on spatial demographic theories and practice.

Keywords

Spatial regression Spatial data analysis Spatial weight matrix Spatial autocorrelation and heterogeneity Spatial demographic analysis 

Notes

Acknowledgments

We are indebted to Paul R. Voss for his guidance with this research and for providing us with insightful suggestions on earlier drafts. Appreciation is extended to three anonymous reviewers for their many helpful comments. We also acknowledge support from the Social Science Research Center at Mississippi State University and Department of Statistics and Department of Soil Science at University of Wisconsin-Madison. Funding has been provided for this research by the USDA Cooperative State Research, Education and Extension Service (CSREES) Hatch project WIS04536 and the Wisconsin Alumni Research Foundation.

References

  1. Alba, R. D., & Logan, J. R. (1993). Minority proximity to whites in suburbs: An individual-level analysis of segregation. American Journal of Sociology, 98(6), 1388–1427.Google Scholar
  2. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
  3. Anselin, L. (1990). Spatial dependence and spatial structural instability in applied regression analysis. Journal of Regional Science, 30, 185–207.Google Scholar
  4. Anselin, L. (1992). SpaceStat tutorial: A workbook for using SpaceStat in the analysis of spatial data. National Center for Geographic Information and Analysis, University of California, Santa Barbara CA.Google Scholar
  5. Anselin, L. (1995). Local indicators of spatial autocorrelation—LISA. Geographical Analysis, 27, 93–115.CrossRefGoogle Scholar
  6. Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In M. Fischer, H. J. Scholten, & D. Unwin (Eds.), Spatial analytical perspectives on GIS (pp. 111–125). London, England: Taylor & Francis.Google Scholar
  7. Anselin, L. (2001). Spatial econometrics. In B. Baltagi (Ed.), A companion to theoretical econometrics (pp. 310–330). Oxford, England: Blackwell.Google Scholar
  8. Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27, 247–267.Google Scholar
  9. Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics. International Regional Science Review, 26, 153–166.Google Scholar
  10. Anselin, L., & Griffith, D. A. (1988). Do spatial effects really matter in regression analysis? Papers in Regional Science, 65, 11–34.CrossRefGoogle Scholar
  11. Anselin, L., & Bera, A. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In A. Ullah & D. Giles (Eds.), Handbook of applied economic statistics (pp. 237–289). New York: Marcel Dekker.Google Scholar
  12. Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Harlow, England: Longman Scientific & Technical.Google Scholar
  13. Baller, R. D., Anselin, L., Messner, S. F., Deane, G., & Hawkins, D. F. (2001). Structural covariates of U. S. county homicide rates: Incorporating spatial effects. Criminology, 39, 561–590.Google Scholar
  14. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2003). Hierarchical modeling and analysis for spatial data. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  15. Beaujeu-Garnier, J. (1966). Geography of population. London, England: Longman.Google Scholar
  16. Berry, B. J. L., & Kasarda, J. D. (1977). Contemporary urban ecology. New York: Macmillan.Google Scholar
  17. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36, 192–236.Google Scholar
  18. Boarnet, M. G. (1997). Highways and economic productivity: Interpreting recent evidence. Journal of Planning Literature, 11(4), 476–486.Google Scholar
  19. Boarnet, M. G. (1998). Spillovers and the locational effects of public infrastructure. Journal of Regional Science, 38(3), 381–400.Google Scholar
  20. Brown, D. L., Fuguitt, G. V., Heaton, T. B., & Waseem, S. (1997). Continuities in size of place preferences in the United States, 1972–1992. Rural Sociology, 62(4), 408–428.CrossRefGoogle Scholar
  21. Cardille, J. A., Ventura, S. J., & Turner, M. G. (2001). Environmental and social factors influencing wildfires in the Upper Midwest, USA. Ecological Applications, 11, 111–127.Google Scholar
  22. Case, A., Rosen, H. S., & Hines, J. R. (1993). Budget spillovers and fiscal policy interdependence: Evidence from the states. Journal of Public Economics, 52, 285–307.Google Scholar
  23. Cervero, R. (2002). Induced travel demand: Research design, empirical evidence, and normative policies. Journal of Planning Literature, 17(1), 3–20.Google Scholar
  24. Cervero, R. (2003). Road expansion, urban growth, and induced travel: A path analysis. Journal of the American Planning Association, 69(2), 145–163.Google Scholar
  25. Cervero, R., & Hansen, M. (2002). Induced travel demand and induced road investment: A simultaneous-equation analysis. Journal of Transport Economics and Policy, 36(3), 469–490.Google Scholar
  26. Charles, C. Z. (2003). The dynamics of racial residential segregation. Annual Review of Sociology, 29, 167–207.Google Scholar
  27. Chi, G. (2006). Environmental demography, small-area population forecasting, and spatio-temporal econometric modeling: Demographics, accessibility, developability, desirability, and livability. Dissertation, Department of Urban and Regional Planning, University of Wisconsin-Madison, Madison WI.Google Scholar
  28. Chi, G., & Voss, P. R. (2005). Migration decision-making: A hierarchical regression approach. Journal of Regional Analysis and Policy, 35(2), 11–22.Google Scholar
  29. Chi, G., Voss, P. R., & Deller, S. C. (2006). Rethinking highway effects on population change. Public Works Management and Policy, 11, 18–32.Google Scholar
  30. Christaller, W. (1966). Central places in southern Germany (Die zentralen Orte in Süddeutschland, Baskin CW, 1933, Trans). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  31. Clark, W. (1996). Understanding residential segregation in American cities: Interpreting the evidence. Population Research and Policy Review, 5, 95–127.Google Scholar
  32. Cliff, A., & Ord, J. K. (1973). Spatial autocorrelation. London, England: Pion Limited.Google Scholar
  33. Cliff, A., & Ord, J. K. (1981). Spatial processes, models and applications. London, England: Pion Limited.Google Scholar
  34. Cowen, D. J., & Jensen, J. R. (1998). Extraction and modeling of urban attributes using remote sensing technology. In D. Liverman, E. F. Moran, R. R. Rindfuss, & P. C. Stern (Eds.), People and pixels: Linking remote sensing and social science (pp. 164–188). Washington, DC: National Academy Press.Google Scholar
  35. Cressie, N. (1993). Statistics for spatial data. New York: Wiley.Google Scholar
  36. Dalenberg, D. R., & Partridge, M. D. (1997). Public infrastructure and wages: Public capital’s role as a productive input and household amenity. Land Economics, 73, 268–284.Google Scholar
  37. Diggle, P., Heagerty, P., Liang, K. Y., & Zeger, S. (2002). Analysis of longitudinal data. Oxford, England: Oxford University Press.Google Scholar
  38. Doreian, P. (1980). Linear models with spatial distributed data: Spatial disturbances or spatial effects? Sociological Methods and Research, 9, 29–60.Google Scholar
  39. Draper, N. R., & Smith, H. (1998). Applied regression analysis. New York: John Wiley & Sons.Google Scholar
  40. Elhorst, P. J. (2001). Dynamic models in space and time. Geographical Analysis, 33, 119–140.CrossRefGoogle Scholar
  41. Fleming, M. M. (2004). Techniques for estimating spatially dependent discrete choice models. In L. Anselin, R. J. G. M. Florax, & S. J. Rey (Eds.), Advances in spatial econometrics (pp. 145–168). Berlin, Germany: Springer.Google Scholar
  42. Florax, R. J. G. M., & Van der Vlist, A. J. (2003). Spatial econometric data analysis: Moving beyond traditional models. International Regional Science Review, 26(3), 223–243.Google Scholar
  43. Fossett, M. (2005). Urban and spatial demography. In D. L. Poston, & M. Micklin (Eds.), Handbook of Population (pp. 479–524). New York: Springer.Google Scholar
  44. Fotheringham, A. S., & Wong, D. W. S. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A, 23, 1025–1034.Google Scholar
  45. Fotheringham, A. S., Brunsdon, M., & Charlton, M. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30, 1905–1927.Google Scholar
  46. Fox, J. (1997). Applied regression analysis, linear models, and related methods. Thousand Oaks, CA: Sage Publications.Google Scholar
  47. Frisbie, W. P., Kasarda, J. D. (1988). Spatial processes. In N. J. Smelser (Ed.), Handbook of sociology (pp. 629–666). Newbury Park, CA: Sage Publications.Google Scholar
  48. Fuguitt, G. V., & Brown, D. (1990). Residential preferences and population redistribution. Demography, 27, 589–600.Google Scholar
  49. Fuguitt, G. V., & Zuiches, J. J. (1975). Residential preferences and population distribution. Demography, 12(3), 491–504.Google Scholar
  50. Fuguitt, G. V., Brown, D. L., & Beale, C. L. (1989). Rural and small town America: The population of the United States in the 1980s. New York: Russell Sage Foundation.Google Scholar
  51. Galster, G. C. (1988). Residential segregation in American cities: A contrary review. Population Research and Policy Review, 7, 93–112.Google Scholar
  52. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  53. Getis, A. (1984). Interaction modeling using second-order analysis. Environment and Planning A, 16(2), 173–183.Google Scholar
  54. Getis, A. (1995). Spatial filtering in a regression framework: Examples using data on urban crime, regional inequality, government expenditures. In L. Anselin & R. J. G. M. Florax (Eds.), New directions in spatial econometrics (pp. 172–185). Berlin, Germany: Springer Verlag.Google Scholar
  55. Goodchild, M. F. (1992). Geographical data modeling. Computer and Geoscience, 18, 401–408.Google Scholar
  56. Gordon, D. (1978). Capitalist development and the history of American cities. In W. Tabb & L. Sawers (Eds.), Marxism and the metropolis (pp. 25–63). Oxford, England: Oxford University Press.Google Scholar
  57. Graaff, T., Florax, R. J. G. M., Nijkamp, P., & Reggiani, A. (2001). A general misspecification test for spatial regression models: Dependence, heterogeneity, and nonlinearity. Journal of Regional Science, 41, 255–276.Google Scholar
  58. Green, M., & Flowerdew, R. (1996). New evidence on the modifiable areal unit problem. In P. Longley & M. Batty (Eds.), Spatial analysis: Modelling in a GIS environment (pp. 41–54). Cambridge, MA: GeoInformation International.Google Scholar
  59. Greene, W. H. (2000). Econometric analysis. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
  60. Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. New York: Springer Verlag.Google Scholar
  61. Hall, P. (1988). The city of theory. In R. LeGates & F. Stout (Eds.), The city reader (pp. 391–393). New York: Routledge.Google Scholar
  62. Hawley, A. H. (1950). Human ecology: A theory of community structure. New York: Ronald Press.Google Scholar
  63. Hill, R. C. (1977). Capital accumulation and urbanization in the United States. Comparative Urban Research, 4, 39–60.Google Scholar
  64. Hudson, J. C. (1972). Geographical diffusion theory. Evanston, IL: Northwestern University.Google Scholar
  65. Humphrey, C. R. (1980). The promotion of growth in small urban places and its impact on population change. Social Science Quarterly, 61, 581–594.Google Scholar
  66. James, P. (1954). The geographic study of population. In P. James & C. Jones (Eds.), American geography: Inventory and prospect (pp. 106–122). Syracuse, NY: Syracuse University Press.Google Scholar
  67. Jaret, C. (1983). Recent neo-Marxist urban analysis. Annual Review of Sociology, 9, 499–525.Google Scholar
  68. Jensen, J. R., Cowen, D. J., Halls, J., Narumalani, S., Schmidt, N. J., Davis, B. A., & Burgess, B. (1994). Improved urban infrastructure mapping and forecasting for BellSouth using remote sensing and GIS technology. Photogrammetric Engineering and Remote Sensing, 60, 339–346.Google Scholar
  69. Johnson, K. M., & Beale, C. L. (1994). The recent revival of widespread population growth in nonmetropolitan areas of the United States. Rural Sociology, 59(4), 655–667.CrossRefGoogle Scholar
  70. Johnson, K. M., & Purdy, R. L. (1980). Recent nonmetropolitan population change in fifty-year perspective. Demography, 17(1), 57–70.Google Scholar
  71. Johnson, K. M. (1982). Organization adjustment to population change in nonmetropolitan America: A longitudinal analysis of retail trade. Social Forces, 60(4), 1123–1139.Google Scholar
  72. Johnson, K. M. (1989). Recent population redistribution trends in nonmetropolitan America. Rural Sociology, 54(3), 301–326.Google Scholar
  73. Jones, H. R. (1990). Population geography. New York: The Guilford Press.Google Scholar
  74. Krugman, P. (1991). Geography and trade. Cambridge, MA: MIT Press.Google Scholar
  75. Land Information and Computer Graphics Facility. (2000). Mapping growth management factors: A practical guide for land use planning. Madison, WI: University of Wisconsin-Madison.Google Scholar
  76. Land Information and Computer Graphics Facility. (2002). Population and land allocation: Evolution of geospatial tools helps citizens engage in land-planning process. Madison, WI: University of Wisconsin-Madison.Google Scholar
  77. Langford, M., & Unwin, D. J. (1994). Generating and mapping population density surfaces within a geographical information system. The Cartographic Journal, 31, 21–26.Google Scholar
  78. Langford, M., Maguire, D. J., & Unwin, D. J. (1991). The areal interpolation problem: Estimating population using remote sensing. in a GIS framework. In I. Masser & M. Blakemore (Eds.), Handling geographical information: Methodology and potential applications (pp. 55–77). London, England: Longman Scientific & Technical.Google Scholar
  79. LeSage, J. P. (1999). A spatial econometric examination of China’s economic growth. Geographic Information Sciences, 5, 143–153.Google Scholar
  80. Lewis, P. H. (1996). Tomorrow by design: A regional design process for sustainability. New York: John Wiley & Sons.Google Scholar
  81. Littell, R., Milliken, G., Stroup, W., Wolfinger, R., & Schabenberger, O. (2006). SAS for mixed models. Cary, NC: SAS Institute Inc.Google Scholar
  82. Loftin, C., & Ward, S. K. (1983). A spatial autocorrelation model of the effects of population density on fertility. American Sociological Review, 48, 121–128.Google Scholar
  83. Logan, J. R., & Molotch, H. L. (1987). Urban fortunes: The political economy of place. Berkeley, CA: University of California Press.Google Scholar
  84. Massey, D. S., & Denton, N. A. (1993). American apartheid: Segregation and the making of the underclass. Cambridge, MA: Harvard University Press.Google Scholar
  85. McKenzie, R. D. (1924). The ecological approach to the study of the human community. American Journal of Sociology, 30, 287–301.Google Scholar
  86. Mennis, J. (2003). Generating surface models of population using dasymetric mapping. The Professional Geographer, 55, 31–42.Google Scholar
  87. Moran, P. (1948). The interpolation of statistical maps. Journal of the Royal Statistical Society B, 10, 243–251.Google Scholar
  88. Mollenkopf, J. (1978). The postwar politics of urban development. In W. Tabb & L. Sawers (Eds.), Marxism and the metropolis (pp. 117–152). Oxford, England: Oxford University Press.Google Scholar
  89. Mollenkopf, J. (1981). Neighborhood political development and the politics of urban growth: Boston and San Francisco 1958–1978. International Journal of Urban and Regional Research, 5, 15–39.CrossRefGoogle Scholar
  90. Openshaw. S. (1984). The modifiable areal unit problem. In Concepts and techniques in modern geography (Vol. 38). London, England: Geobooks.Google Scholar
  91. Openshaw, S., & Taylor, P. J. (1981). The modifiable areal unit problem. In N. Wrigley, & R. J. Bennett (Eds.), Quantitative geography: A British view (pp. 60–70). London, England: Routledge.Google Scholar
  92. Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27, 286–306.CrossRefGoogle Scholar
  93. Pacheco, A. I., & Tyrrell, T. J. (2002). Testing spatial patterns and growth spillover effects in clusters of cities. Journal of Geographical Systems, 4, 275–285.Google Scholar
  94. Paelinck, J. H. P. (2000). On aggregation in spatial econometric modeling. Journal of Geographical Systems, 2, 157–165.Google Scholar
  95. Parent, O., & Riou, S. (2005). Bayesian analysis of knowledge spillovers in European regions. Journal of Regional Science, 45(4), 747–775.Google Scholar
  96. Parisi, D., Lichter, D. T., Grice, S. M., & Taquino, M. (2007). Disaggregating trends in racial residential segregation: Metropolitan, micropolitan, and non-core counties compared. Presented at the annual meeting of the Population Association of America, March 29, 2007, New York NY.Google Scholar
  97. Perroux, F. (1955). Note sur la Notion de pole de croissance. Economie Appliquée, 8, 307–320.Google Scholar
  98. Poston, D. L., & Frisbie, W. P. (2005). Ecological demography. In D. L. Poston & M. Micklin (Eds.), Handbook of population (pp. 601–623). New York: Springer.Google Scholar
  99. Robinson W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351–357.Google Scholar
  100. Sampson R. J., Morenoff J. D., & Earls, F. (1999). Beyond social capital: Spatial dynamics of collective efficacy for children. American Sociological Review, 64(5), 633–660.Google Scholar
  101. Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Boca Raton, FL: Chapman & Hall/CRC Press.Google Scholar
  102. Tiefelsdorf, M. (2000). Modelling spatial processes—The identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Berlin, Germany: Springer Verlag.Google Scholar
  103. Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.Google Scholar
  104. Tolnay, S. E., Deane, G., & Beck, E. M. (1996). Vicarious violence: Spatial effects on southern lynchings, 1890–1919. American Journal of Sociology, 102, 788–815.Google Scholar
  105. Trewartha, G. (1953). A case for population geography. Annals of the Association of American Geographers, 43, 71–97.Google Scholar
  106. Voss, P. R., & Chi, G. (2006). Highways and population change. Rural Sociology, 71(1), 33–58.Google Scholar
  107. Voss, P. R., White, K. J. C., & Hammer, R. B. (2006). Explorations in spatial demography. In W. A. Kandel, &D. L. Brown (Eds.), Population change and rural society (pp. 407–429). Dordrecht: Springer.Google Scholar
  108. Wrigley, N., Holt, T., Steel, D., & Tranmer, M. (1996). Analysing, modelling, and resolving the ecological fallacy. In P. Longley & M. Batty (Eds.), Spatial analysis: Modelling in a GIS environment (pp. 23–40). Cambridge, MA: GeoInformation International.Google Scholar
  109. Zelinsky, W. (1966). A prologue to population geography. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  110. Zhu, J., Huang, H.-C., & Wu, J. (2005). Modeling spatial-temporal binary data using Markov random field models. Journal of Agricultural, Biological, and Environmental Statistics, 10, 212–225.Google Scholar
  111. Zuiches, J. J., & Rieger, J. H. (1978). Size of place preferences and life cycle migration: A cohort comparison. Rural Sociology, 43(4), 618–633.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Social Science Research CenterMississippi State UniversityMississippi StateUSA
  2. 2.Department of StatisticsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Soil ScienceUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations