Advertisement

Population and Environment

, Volume 41, Issue 2, pp 209–234 | Cite as

People and Pixels 20 years later: the current data landscape and research trends blending population and environmental data

  • Tracy A. KuglerEmail author
  • Kathryn Grace
  • David J. Wrathall
  • Alex de Sherbinin
  • David Van Riper
  • Christoph Aubrecht
  • Douglas Comer
  • Susana B. Adamo
  • Guido Cervone
  • Ryan Engstrom
  • Carolynne Hultquist
  • Andrea E. Gaughan
  • Catherine Linard
  • Emilio Moran
  • Forrest Stevens
  • Andrew J. Tatem
  • Beth Tellman
  • Jamon Van Den Hoek
Original paper

Abstract

In 1998, the National Research Council published People and Pixels: Linking Remote Sensing and Social Science. The volume focused on emerging research linking changes in human populations and land use/land cover to shed light on issues of sustainability, human livelihoods, and conservation, and led to practical innovations in agricultural planning, hazard impact analysis, and drought monitoring. Since then, new research opportunities have emerged thanks to the growing variety of remotely sensed data sources, an increasing array of georeferenced social science data, including data from mobile devices, and access to powerful computation cyberinfrastructure. In this article, we outline the key extensions of the People and Pixels foundation since 1998 and highlight several breakthroughs in research on human–environment interactions. We also identify pressing research problems—disaster, famine, drought, war, poverty, climate change—and explore how interdisciplinary approaches integrating people and pixels are being used to address them.

Keywords

Remote sensing Population data Human dimensions of global change Data integration Mobile device data 

Notes

Acknowledgments

This paper is the result of a 2018 Population-Environment Research Network (PERN) cyberseminar for which the co-authors served as organizers and invited experts.

Funding information

The authors would like to acknowledge the support under NASA contract NNG13HQ04C for the continued operation of the Socioeconomic Data and Applications Center (SEDAC), which underwrites PERN; the Minnesota Population Center (P2C HD041023), funded through a grant from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD); and the Office of Naval Research (ONR) award no. N00014-16-1-2543 (PSU no. 171570) and US Army Corps of Engineers ERDC-GRL award no. W9126G-18-2-0037 (PSU no. 209549).

Compliance with ethical standards

No experiments were performed in the preparation of this work, other than those performed for previously published work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamo, S., & de Sherbinin, A. (2018). Remote sensing for social scientists: tools to facilitate the use of remote sensing data in social and health sciences research. Accessed at http://sedac.ciesin.columbia.edu/guides
  2. Ahola, T., Virrantaus, K., Krisp, J. M., & Hunter, G. J. (2007). A spatio-temporal population model to support risk assessment and damage analysis for decision-making. International Journal of Geographical Information Science, 21(8), 935–953.Google Scholar
  3. Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., et al. (2013). Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica, 45(2), 262–271.Google Scholar
  4. Anderson, M. (2015). Technology device ownership: 2015. Pew Research Center, October 2015. Retrieved from http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/. Accessed Aug 2018
  5. Arino, O., Gross, D., Ranera, F., Leroy, M., Bicheron, P., Brockman, C., ... & Bourg, L. (2007). GlobCover: ESA service for global land cover from MERIS. 2007 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2412–2415.Google Scholar
  6. Association of European Space Research Establishments (ESRE) (2017). Selected trends and space technologies expected to shape the next decade. ESRE Whitepaper, The Association of European Space Research Establishments (ESRE), November 2017.Google Scholar
  7. Aubrecht, C., Özceylan Aubrecht, D., & Steinnocher, K. (2015). New perspectives on population data in spatial modeling for crisis management: where are we headed? In J. D. VanVactor (Ed.), Crisis management: a leadership perspective (pp. 87–92). Hauppauge, NY: Nova Science.Google Scholar
  8. Aubrecht, C., Özceylan Aubrecht, D., Ungar, J., Freire, S., & Steinnocher, K. (2017). VGDI–advancing the concept: volunteered geo-dynamic information and its benefits for population dynamics modeling. Transactions in GIS, 21(2), 253–276.  https://doi.org/10.1111/tgis.12203.CrossRefGoogle Scholar
  9. Aubrecht, C., Steinnocher, K., & Huber, H. (2014). DynaPop—population distribution dynamics as basis for social impact evaluation in crisis management. In S.R. Hiltz, M.S. Pfaff, L. Plotnick, & P.C. Shih (Eds.), ISCRAM 2014 conference proceedings, 11 thinternational conference on information systems for crisis response and management, 319-323.Google Scholar
  10. Aubrecht, C., Ungar, J., Özceylan Aubrecht, D., Freire, S., & Steinnocher, K. (2018). Mapping land use dynamics using the collective power of the crowd. In P. P. Mathieu & C. Aubrecht (Eds.), Earth observation open science and innovation (Springer. ISSI scientific report series) (Vol. 15, pp. 247–253).Google Scholar
  11. Auty, R. M. (2001). The political economy of resource-driven growth. European Economic Review, 45(4–6), 839–846.Google Scholar
  12. Bakhtsiyarava, M., Grace, K., & Nawrotzki, R. J. (2018). Climate, birth weight, and agricultural livelihoods in Kenya and Mali. American Journal of Public Health, 108(S2), S144–S150.Google Scholar
  13. Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: methods, applications and data. Advances in Parasitology, 62, 119–156.Google Scholar
  14. Ballentine, K., & Nitzschke, H. (2005). The political economy of civil war and conflict transformation. In M. Fischer & B. Schmelzle (Eds.), Transforming war economies: dilemmas and strategies (pp. 11–33). Berlin: Berghof Research Center for Constructive Conflict Management.Google Scholar
  15. Batista e Silva, F., Rosina, K., Schiavina, M., Marín-Herrera, M., Freire, S., Ziemba, L., Craglia, M., & Lavalle, C. (2018). From place of residence to place of activity: towards spatiotemporal mapping of population density in Europe. Lund: Proceedings of the AGILE conference 2018.Google Scholar
  16. Bartholome, E., & Belward, A. S. (2005). GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959–1977.Google Scholar
  17. Belward, A., & Skøien, J. O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 115–128.Google Scholar
  18. Bey, A., Sánchez Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., et al. (2016). Collect Earth: land use and land cover assessment through augmented visual interpretation. Remote Sensing, 8(10), 1–24.Google Scholar
  19. Bhaduri, B., Bright, E., Coleman, P., & Urban, M. L. (2007). LandScan USA: a high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal, 69(1–2), 103–117.Google Scholar
  20. Blackman, A., Corral, L., Santos Lima, E., & Asner, G. P. (2017). Titling indigenous communities protects forests in the Peruvian Amazon. Proceedings of the National Academy of Sciences, 114(16), 4123–4128.Google Scholar
  21. Bosco, C., Alegana, V., Bird, T., Pezzulo, C., Bengtsson, L., Sorichetta, A., et al. (2017). Exploring the high-resolution mapping of gender-disaggregated development indicators. J R Soc Interface, 14(129), 20160825.Google Scholar
  22. Brown, M. E., Grace, K., Shively, G., Johnson, K. B., & Carroll, M. (2014). Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change. Population and Environment, 36(1), 48–72.Google Scholar
  23. Buczak, A. L., Koshute, P. T., Babin, S. M., Feighner, B. H., & Lewis, S. H. (2012). A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Medical Informatics and Decision Making, 12(1), 124.Google Scholar
  24. Cesare, N., Lee, H., McCormick, T., Spiro, E., & Zagheni, E. (2018). Promises and pitfalls of using digital traces for demographic research. Demography, 55(5), 1979–1999.Google Scholar
  25. Cervone, G., Sava, E., Huang, Q., Schnebele, E., Harrison, J., & Waters, N. (2016). Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. International Journal of Remote Sensing, 37(1), 100–124.Google Scholar
  26. Chretien, J. P., Anyamba, A., Bedno, S. A., Breiman, R. F., Sang, R., Sergon, K., … & Linthicum, K.J. (2007). Drought-associated chikungunya emergence along coastal East Africa. Am J Trop Med Hyg 76 (3), 405–7.Google Scholar
  27. Center for International Earth Science Information Network - CIESIN - Columbia University. (2017). Gridded population of the world, version 4 (GPWv4): basic demographic characteristics, revision 10. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).  https://doi.org/10.7927/H45H7D7F
  28. Comer, D. C. (2013). Petra and the paradox of a great city built by nomads: an explanation suggested by satellite imagery. In D. C. Comer & M. J. Harrower (Eds.), Mapping archaeological landscapes from space (pp. 73–83). New York: Springer.Google Scholar
  29. Comer, D. C., Blom, R. G., & Megarry, W. (2013). The influence of viewshed on prehistoric archaeological site patterning at San Clemente Island as suggested by analysis of synthetic aperture radar images. In D. C. Comer & M. J. Harrower (Eds.), Mapping archaeological landscapes from space (pp. 159–171). New York: Springer.Google Scholar
  30. Collier, P., & Hoeffler, A. (2002). On the incidence of civil war in Africa. Journal of Conflict Resolution, 46(1), 13–28.Google Scholar
  31. Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P., & Ozdogan, M. (2014). Global land cover mapping: a review and uncertainty analysis. Remote Sensing, 6(12), 12070–12093.  https://doi.org/10.3390/rs61212070.CrossRefGoogle Scholar
  32. Davenport, F., Grace, K., Funk, C., & Shukla, S. (2017). Child health outcomes in sub-Saharan Africa: a comparison of changes in climate and socio-economic factors. Global Environmental Change, 46, 72–87.Google Scholar
  33. Denis, G., Claverie, A., Pasco, X., Darnis, J. P., de Maupeou, B., Lafaye, M., & Morel, E. (2017). Towards disruptions in Earth observation? New Earth observation systems and markets evolution: possible scenarios and impacts. Acta Astronautica, 137, 415–433.Google Scholar
  34. de Albuquerque, J. P., Herfort, B., Brenning, A., & Zipf, A. (2015). A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science, 29(4), 667–689.Google Scholar
  35. de Sherbinin, A. (2016). Remote sensing and socioeconomic data integration: lessons from the NASA Socioeconomic Data and Applications Center. In D. A. Quattrochi, E. A. Wentz, N. Lam, & C. Emerson (Eds.), Integrating scale in remote sensing and GIS (pp. 371–388). Boca Raton: CRC.Google Scholar
  36. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., et al. (2014). Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences, 111(45), 15888–15893.Google Scholar
  37. Dey, S., Di Girolamo, L., van Donkelaar, A., Tripathi, S. N., Gupta, T., & Mohan, M. (2012). Variability of outdoor fine particulate (PM2.5) concentration in the Indian subcontinent: a remote sensing approach. Remote Sensing of Environment, 127, 153–161.Google Scholar
  38. d’Oliveira, F. A., Melo, F. C. L. D., & Devezas, T. C. (2016). High-altitude platforms—present situation and technology trends. Journal of Aerospace Technology and Management, 8(3), 249–262.Google Scholar
  39. Doxsey-Whitfield, E., MacManus, K., Adamo, S. B., Pistolesi, L., Squires, J., Borkovska, O., & Baptista, S. R. (2015). Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Papers in Applied Geography, 1(3), 226–234.Google Scholar
  40. Eicher, C. L., & Brewer, C. A. (2001). Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science, 28(2), 125–138.Google Scholar
  41. Eklund, L., Degerald, M., Brandt, M., Prishchepov, A. V., & Pilesjö, P. (2017). How conflict affects land use: agricultural activity in areas seized by the Islamic State. Environmental Research Letters, 12(5), 054004.Google Scholar
  42. Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D., & Ramankutty, N. (2013). Anthropogenic biomes of the world, version 2: 2000. Palisades: NASA Socioeconomic Data and Applications Center (SEDAC).  https://doi.org/10.7927/H4D798B9.CrossRefGoogle Scholar
  43. Engstrom, R., Copenhaver, A., Newhouse, D., Hersh, J., & Haldavanekar, V. (2017a). Evaluating the relationship between spatial and spectral features derived from high spatial resolution satellite data and urban poverty in Colombo, Sri Lanka. Joint Urban Remote Sensing Event (JURSE 2017).  https://doi.org/10.1109/JURSE.2017.7924590.
  44. Engstrom, R., Copenhaver, A., & Qi, Y. (2016). Evaluating the use of multiple imagery-derived spatial features to predict census demographic variables in Accra, Ghana. In Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International (pp. 7318-7321). IEEE.Google Scholar
  45. Engstrom, R., Hersh, J., & Newhouse, D. L. (2017b). Poverty from space: using high-resolution satellite imagery for estimating economic well-being. (Policy Research WPS 8284). Washington: World Bank Group.Google Scholar
  46. Engstrom, R., Sandborn, A., Yu, Q., Burgdorfer, J., Stow, D., Weeks, J., & Graesser, J. (2015). Mapping slums using spatial features in Accra, Ghana. In 2015 Joint urban remote sensing event (JURSE) (pp. 1–4). IEEE.Google Scholar
  47. Entwisle, B., & Stern, P. C. (Eds.). (2005). Population, land use, and environment: research directions. Washington: National Academies Press.Google Scholar
  48. Esch, T., Kurz, F., Pacini, F., Ottavianelli, G., & Vojtek, D. (2017). Capitalising high altitude pseudo satellites for urban applications—first results from the TEP Urban Project. HAPS4ESA workshop. Noordwijkerhout, The Netherlands.Google Scholar
  49. Esch, T., Marconcini, M., Felbier, A., Roth, A., Heldens, W., Huber, M., et al. (2013). Urban footprint processor—fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geoscience and Remote Sensing Letters, 10(6), 1617–1621.Google Scholar
  50. Esch, T., Marconcini, M., Marmanis, D., Zeidler, J., Elsayed, S., Metz, A., et al. (2014). Dimensioning urbanization—an advanced procedure for characterizing human settlement properties and patterns using spatial network analysis. Applied Geography, 55, 212–228.Google Scholar
  51. European Commission, Joint Research Centre. (2003). Global land cover 2000 database. Retrieved from http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed Jan 2013
  52. Facebook Connectivity Lab & Center for International Earth Science Information Network - CIESIN - Columbia University. (2016). High resolution settlement layer (HRSL). Source imagery for HRSL © 2016 DigitalGlobe. Retrieved from https://www.ciesin.columbia.edu/data/hrsl/. Accessed Jul 2018
  53. Fearon, J. D., & Laitin, D. D. (2003). Ethnicity, insurgency, and civil war. American Political Science Review, 97(1), 75–90.Google Scholar
  54. Freire, S., Aubrecht, C., & Wegscheider, S. (2013). Advancing tsunami risk assessment by improving spatio-temporal population exposure and evacuation modeling. Natural Hazards, 68(3), 1311–1324.Google Scholar
  55. Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182.Google Scholar
  56. Geddes, J. A., Martin, R. V., Boys, B. L., & van Donkelaar, A. (2017). Global 3-year running mean ground-level nitrogen dioxide (NO2) grids from GOME, SCIMACHY and GOME-2. Palisades: NASA Socioeconomic Data and Applications Center (SEDAC).  https://doi.org/10.7927/H4JW8BTT.CrossRefGoogle Scholar
  57. Ghosh, T., Anderson, S., Elvidge, C., & Sutton, P. (2013). Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability, 5(12), 4988–5019.Google Scholar
  58. Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732–16737.Google Scholar
  59. Gómez Giménez, M., de Jong, R., Della Peruta, R., Keller, A., & Schaepman, M. E. (2017). Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sensing of Environment, 198, 126–139.Google Scholar
  60. Goodhand, J. (2004). From war economy to peace economy? Reconstruction and state building in Afghanistan. Journal of International Affairs, 58(1), 155–174.Google Scholar
  61. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.Google Scholar
  62. Grace, K., Davenport, F., Funk, C., & Lerner, A. M. (2012). Child malnutrition and climate in sub-Saharan Africa: an analysis of recent trends in Kenya. Applied Geography, 35(1–2), 405–413.Google Scholar
  63. Grandia, L. (2013). Road mapping: megaprojects and land grabs in the northern Guatemalan lowlands. Development and Change, 44(2), 233–259.Google Scholar
  64. Graesser, J., Cheriyadat, A., Vatsavai, R. R., Chandola, V., Long, J., & Bright, E. (2012). Image based characterization of formal and informal neighborhoods in an urban landscape. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1164–1176.Google Scholar
  65. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.Google Scholar
  66. Hansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., et al. (2016). Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11(3), 034008.Google Scholar
  67. Hantson, S., Pueyo, S., & Chuvieco, E. (2015). Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 24(1), 77–86.Google Scholar
  68. Harris, I. P. D. J., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. International Journal of Climatology, 34(3), 623–642.Google Scholar
  69. Hegre, H. (2004). The duration and termination of civil war. Journal of Peace Research, 41(3), 243–252.Google Scholar
  70. Henderson, J. V., Storeygard, A., & Weil, D. N. (2012). Measuring economic growth from outer space. The American Economic Review, 102(2), 994–1028.Google Scholar
  71. Herold, M., Liu, X., & Clarke, K. C. (2003). Spatial metrics and image texture for mapping urban land use. Photogrammetric Engineering and Remote Sensing, 69(9), 991–1001.Google Scholar
  72. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.Google Scholar
  73. Horanont, T., Witayangkurn, A., Sekimoto, Y., & Shibasaki, R. (2013). Large-scale auto-GPS analysis for discerning behavior change during crisis. IEEE Intelligent Systems, 28(4), 26–34.Google Scholar
  74. Hultquist, C., & Cervone, G. (2018). Citizen monitoring during hazards: validation of Fukushima radiation measurements. GeoJournal, 83(2), 189–206.Google Scholar
  75. Isen, A., Rossin-Slater, M., & Walker, R. (2017). Relationship between season of birth, temperature exposure, and later life wellbeing. Proceedings of the National Academy of Sciences, 114(51), 13447–13452.Google Scholar
  76. Jain, M., Srivastava, A., Joon, R., McDonald, A., Royal, K., Lisaius, M., & Lobell, D. (2016). Mapping smallholder wheat yields and sowing dates using micro-satellite data. Remote Sensing, 8(10), 860.Google Scholar
  77. Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794.Google Scholar
  78. Johnson, K., & Brown, M. E. (2014). Environmental risk factors and child nutritional status and survival in a context of climate variability and change. Applied Geography, 54, 209–221.Google Scholar
  79. Jun, C., Ban, Y., & Li, S. (2014). China: open access to Earth land-cover map. Nature, 514(7523), 434.  https://doi.org/10.1038/514434c.CrossRefGoogle Scholar
  80. Kerski, J. J., Demirci, A., & Milson, A. J. (2013). The global landscape of GIS in secondary education. Journal of Geography, 112(6), 232–247.  https://doi.org/10.1080/00221341.2013.801506.CrossRefGoogle Scholar
  81. Klaasse, A., Haas, E., Dost, R., Riffler, M., Shamsiev, B., & Garrett, K. (2018). Satellites for Syria: new methods for assessing agricultural production in conflict areas to support productivity assessments, rehabilitation efforts, and (post conflict) assistance. Land and Poverty Conference 2018: Land Governance in an Interconnected World, World Bank. Retrieved from https://www.conftool.com/landandpoverty2018/index.php/10-11-Klaasse-339_paper.pdf?page=downloadPaper&filename=10-11-Klaasse-339_paper.pdf&form_id=339&form_version=final. Accessed Aug 2018
  82. Kohli, D., Stein, A., & Sliuzas, R. (2016). Uncertainty analysis for image interpretations of urban slums. Computers, Environment and Urban Systems, 60, 37–49.Google Scholar
  83. Kugler, T. A., Van Riper, D. C., Manson, S. M., Haynes, D. A., II, Donato, J., & Stinebaugh, K. (2015). Terra Populus: workflows for integrating and harmonizing geospatial population and environmental data. Journal of Map & Geography Libraries, 11(2), 180–206.Google Scholar
  84. Kuffer, M., Pfeffer, K., & Sliuzas, R. (2016). Slums from space—15 years of slum mapping using remote sensing. Remote Sensing, 8(6), 455.Google Scholar
  85. Leyk, S., Gaughan, A. E., Adamo, S. B., de Sherbinin, A., Balk, D., Freire, S., et al. (2019). Allocating people to pixels: a review of large-scale gridded population data products and their fitness for use. Earth System Science Data Discussions.  https://doi.org/10.5194/essd-2019-82.
  86. Li, X., Gong, P., & Liang, L. (2015). A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment, 166(Sept.), 78–90.  https://doi.org/10.1016/J.RSE.2015.06.007.CrossRefGoogle Scholar
  87. Liverman, D., Moran, E. F., Rindfuss, R. R., & Stern, P. C. (Eds.). (1998). People and pixels: linking remote sensing and social science. Washington, DC: National Academies Press.Google Scholar
  88. Long, J. A., & Nelson, T. A. (2013). A review of quantitative methods for movement data. International Journal of Geographical Information Science, 27(2), 292–318.Google Scholar
  89. Lovelace, R., Nowosad, J., & Muenchow, J. (2018). Geocomputation with R. Retrieved from https://geocompr.robinlovelace.net/. Accessed June 2018
  90. Lu, X., Wrathall, D. J., Sundsøy, P. R., Nadiruzzaman, M., Wetter, E., Iqbal, A., et al. (2016a). Unveiling hidden migration and mobility patterns in climate stressed regions: a longitudinal study of six million anonymous mobile phone users in Bangladesh. Global Environmental Change, 38, 1–7.Google Scholar
  91. Lu, X., Wrathall, D. J., Sundsøy, P. R., Nadiruzzaman, M., Wetter, E., Iqbal, A., et al. (2016b). Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Climatic Change, 138(3–4), 505–519.Google Scholar
  92. Mathieu, P.-P., & Aubrecht, C. (Eds.) (2018). Earth observation open science and innovation. ISSI scientific report series, vol. 15. SpringerOpen.Google Scholar
  93. Martin, D., Cockings, S., & Leung, S. (2015). Developing a flexible framework for spatiotemporal population modeling. Annals of the Association of American Geographers, 105(4), 754–772.Google Scholar
  94. Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9), 2784–2817.Google Scholar
  95. Maxwell, S. K., Meliker, J. R., & Goovaerts, P. (2010). Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research. Journal of Exposure Science & Environmental Epidemiology, 20(2), 176.Google Scholar
  96. McPherson, T. N., Ivey, A., Brown, M. J., & Streit, G. E. (2004). Determination of the spatial and temporal distribution of population for air toxics exposure assessments. American Meteorological Society fifth conference on urban environment, American Meteorological Society. Retrieved from https://ams.confex.com/ams/pdfpapers/80347.pdf. Accessed Nov 2018
  97. McSweeney, K., Nielsen, E. A., Taylor, M. J., Wrathall, D. J., Pearson, Z., Wang, O., & Plumb, S. T. (2014). Drug policy as conservation policy: narco-deforestation. Science, 343(6170), 489–490.Google Scholar
  98. McSweeney, K., Richani, N., Pearson, Z., Devine, J., & Wrathall, D. J. (2017). Why do narcos invest in rural land? Journal of Latin American Geography, 16(2), 3–29.Google Scholar
  99. Mennis, J., & Hultgren, T. (2006). Intelligent dasymetric mapping and its application to areal interpolation. Cartography and Geographic Information Science, 33(3), 179–194.Google Scholar
  100. Minnesota Population Center. (2018). Integrated public use microdata series, international: Version 7.1 [dataset]. Minneapolis, MN: IPUMS. doi:  https://doi.org/10.18128/D020.V7.0
  101. Mikal, J., Hurst, S., & Conway, M. (2016). Ethical issues in using Twitter for population-level depression monitoring: a qualitative study. BMC Medical Ethics, 17(1), 22.  https://doi.org/10.1186/s12910-016-0105-5.CrossRefGoogle Scholar
  102. Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q., & Vespignani, A. (2013). The Twitter of Babel: mapping world languages through microblogging platforms. PLoS One, 8(4).  https://doi.org/10.1371/journal.pone.0061981.Google Scholar
  103. Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 22(1).  https://doi.org/10.1029/2007GB002947.Google Scholar
  104. Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota's 10,000 lakes. Remote Sensing of Environment, 112(11), 4086–4097.Google Scholar
  105. Panteras, G., & Cervone, G. (2018). Enhancing the temporal resolution of satellite-based flood extent generation using crowdsourced data for disaster monitoring. International Journal of Remote Sensing, 39(5), 1459–1474.Google Scholar
  106. Patel, N. N., Stevens, F. R., Huang, Z., Gaughan, A. E., Elyazar, I., & Tatem, A. J. (2017). Improving large area population mapping using geotweet densities. Transactions in GIS, 21(2), 317–331.Google Scholar
  107. Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422.Google Scholar
  108. Pengra, B., Long, J., Dahal, D., Stehman, S. V., & Loveland, T. R. (2015). A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30m continuous field tree cover data. Remote Sensing of Environment, 165, 234–248.Google Scholar
  109. Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., ... & Marin-Herrera, M. A. (2013). A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2102–2131.Google Scholar
  110. Pinkovskiy, M., & Sala-i-Martin, X. (2016). Lights camera income. Illuminating the national accounts-household surveys debate. Quarterly Journal of Economics, 131(2), 579–631.Google Scholar
  111. Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22(1).  https://doi.org/10.1029/2007GB002952.Google Scholar
  112. Rey, S.J. (2017). Python for GIS. In J.P. Wilson. (Ed.), The geographic information science & technology body of knowledge (3rd Quarter 2017 Edition). University Consortium for Geographic Information Science. doi:  https://doi.org/10.22224/gistbok/2017.3.4
  113. Rindfuss, R. R., & Stern, P. C. (1998). Linking remote sensing and social science: the need and the challenges. In D. Liverman, E. F. Moran, R. R. Rindfuss, & P. C. Stern (Eds.), People and pixels: linking remote sensing and social science (pp. 1–27). Washington, DC: National Academies Press.Google Scholar
  114. Röder, A., Hill, J., Duguy, B., Alloza, J. A., & Vallejo, R. (2008). Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sensing of Environment, 112(1), 259–273.Google Scholar
  115. Ross, M. L. (2004). What do we know about natural resources and civil war? Journal of Peace Research, 41(3), 337–356.Google Scholar
  116. Ruggles, S., Kugler, T. A., Fitch, C. A., & Van Riper, D. C. (2015, November). Terra Populus: integrated data on population and environment. 2015 IEEE International Conference on Data Mining Workshop (ICDMW). doi:  https://doi.org/10.1109/ICDMW.2015.204.
  117. Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891–904.Google Scholar
  118. Sandborn, A., & Engstrom, R. N. (2016). Determining the relationship between census data and spatial features derived from high-resolution imagery in Accra, Ghana. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 1970–1977.Google Scholar
  119. Sava, E., Clemente-Harding, L., & Cervone, G. (2017). Supervised classification of civil air patrol (CAP). Natural Hazards, 86(2), 535–556.Google Scholar
  120. Schabenberger, O. & Gotway, C.A. (2017). Statistical methods for spatial data analysis. Chapman and Hall/CRC.Google Scholar
  121. Schade, S., Diaz, L., Ostermann, F., Spinsanti, L., Luraschi, G., Cox, S., et al. (2013). Citizen-based sensing of crisis events: sensor web enablement for volunteered geographic information. Applied Geomatics, 5(1), 3–18.Google Scholar
  122. Schroeder, J. P. (2017). Hybrid areal interpolation of census counts from 2000 blocks to 2010 geographies. Computers, Environment and Urban Systems, 62, 53–63.  https://doi.org/10.1016/j.compenvurbsys.2016.10.001.CrossRefGoogle Scholar
  123. Sesnie, S. E., Tellman, B., Wrathall, D., McSweeney, K., Nielsen, E., Benessaiah, K., et al. (2017). A spatio-temporal analysis of forest loss related to cocaine trafficking in Central America. Environmental Research Letters, 12(5), 054015.Google Scholar
  124. Serajuddin, U., Uematsu, H., Wieser, C., Yoshida, N., & Dabalen, A. (2015). Data deprivation: another deprivation to end. Policy Research Working Papers, The World Bank doi:  https://doi.org/10.1596/1813-9450-7252.Google Scholar
  125. Sever, T. L. (1998). Validating prehistoric and current social phenomena upon the landscape of the Petén, Guatemala. In D. Liverman, E. F. Moran, R. R. Rindfuss, & P. C. Stern (Eds.), People and pixels: linking remote sensing and social science (pp. 145–163). Washington: National Academies Press.Google Scholar
  126. Sever, T. L., & Irwin, D. E. (2003). Landscape archaeology: remote-sensing investigation of the ancient Maya in the Petén rainforest of northern Guatemala. Ancient Mesoamerica, 14(1), 113–122.Google Scholar
  127. Sexton, J. O., Song, X. P., Huang, C., Channan, S., Baker, M. E., & Townshend, J. R. (2013). Urban growth of the Washington, DC-Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sensing of Environment, 129, 42–53.Google Scholar
  128. Shively, G., Sununtnasuk, C., & Brown, M. (2015). Environmental variability and child growth in Nepal. Health & Place, 35, 37–51.  https://doi.org/10.1016/j.healthplace.2015.06.008.CrossRefGoogle Scholar
  129. Sorichetta, A., Hornby, G. M., Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Scientific Data, 2, 150045.Google Scholar
  130. Stefani, A., Dusfour, I., Corrêa, A.P.S.A., Cruz, M.C.B., Dessay, N., Galardo, A.K.R., … & Roux, E. (2013). Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data. Malaria Journal, 12(1), 192.Google Scholar
  131. Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLoS One, 10(2), e0107042.Google Scholar
  132. Taubenböck, H., & Kraff, N. J. (2014). The physical face of slums: a structural comparison of slums in Mumbai, India, based on remotely sensed data. Journal of Housing and the Built Environment, 29(1), 15–38.Google Scholar
  133. Tidball, K. G., & Krasny, M. E. (2012). A role for citizen science in disaster and conflict recovery and resilience. In J. L. Dickinson & R. Bonney (Eds.), Citizen science: public participation in environmental research (pp. 226–234). Ithaca: Comstock Publishing Associates.Google Scholar
  134. Tobler, W. R. (1979). Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical Association, 74(367), 519–530.Google Scholar
  135. Tong, D., & Murray, A. T. (2012). Spatial optimization in geography. Annals of the Association of American Geographers, 102(6), 1290–1309.Google Scholar
  136. University of Maryland. (2013). First detailed map of global forest change. ScienceDaily. Retrieved December 4, 2018 from www.sciencedaily.com/releases/2013/11/131114142123.htm. Accessed 4 Dec 2018
  137. van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., et al. (2016). Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites. Environmental Science & Technology, 50(7), 3762–3772.Google Scholar
  138. van Donkelaar, A., Martin, R.V., Brauer, M., Hsu, N.C., Kahn, R.A., Levy, R.C., … & Winker, D.M. (2018). Global annual PM2.5 grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC)  https://doi.org/10.7927/H4ZK5DQS.
  139. VanWey, L. K., Rindfuss, R. R., Gutmann, M. P., Entwisle, B., & Balk, D. L. (2005). Confidentiality and spatially explicit data: concerns and challenges. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15337–15342.  https://doi.org/10.1073/pnas.0507804102.CrossRefGoogle Scholar
  140. van Zanten, B. T., Van Berkel, D. B., Meentemeyer, R. K., Smith, J. W., Tieskens, K. F., & Verburg, P. H. (2016). Continental-scale quantification of landscape values using social media data. Proceedings of the National Academy of Sciences, 113(46), 12974–12979.Google Scholar
  141. Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., et al. (2016). Global terrestrial human footprint maps for 1993 and 2009. Scientific Data, 3, 160067.Google Scholar
  142. Wiig, F., Harrower, M., Braun, A., Nathan, S., Lehner, J., Simon, K., et al. (2018). Mapping a subsurface water channel with X-band and C-band synthetic aperture radar at the Iron Age archaeological site of 'Uqdat al-Bakrah (Safah), Oman. Geosciences, 8(9), 334.Google Scholar
  143. Williams, J. N. (2013). Humans and biodiversity: population and demographic trends in the hotspots. Population and Environment, 34(4), 510–523.Google Scholar
  144. Witmer, F. D. (2015). Remote sensing of violent conflict: eyes from above. International Journal of Remote Sensing, 36(9), 2326–2352.Google Scholar
  145. Wood, J., Slingsby, A., & Dykes, J. (2011). Visualizing the dynamics of London’s bicycle-hire scheme. Cartographica: The International Journal for Geographic Information and Geovisualization, 46(4), 239–251.  https://doi.org/10.3138/carto.46.4.239.CrossRefGoogle Scholar
  146. World Bank. (2016). World development report 2016: digital dividends. Washington: World Bank.  https://doi.org/10.1596/978-1-4648-0671-1.CrossRefGoogle Scholar
  147. Zheng, Z., Li, Y., Guo, Y., Xu, Y., Liu, G., & Du, C. (2015). Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China. Remote Sensing, 7(10), 13975–13999.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tracy A. Kugler
    • 1
    Email author
  • Kathryn Grace
    • 2
  • David J. Wrathall
    • 3
  • Alex de Sherbinin
    • 4
  • David Van Riper
    • 1
  • Christoph Aubrecht
    • 5
  • Douglas Comer
    • 6
  • Susana B. Adamo
    • 4
  • Guido Cervone
    • 7
  • Ryan Engstrom
    • 8
  • Carolynne Hultquist
    • 7
  • Andrea E. Gaughan
    • 9
  • Catherine Linard
    • 10
  • Emilio Moran
    • 11
  • Forrest Stevens
    • 9
  • Andrew J. Tatem
    • 12
  • Beth Tellman
    • 13
  • Jamon Van Den Hoek
    • 3
  1. 1.Institute for Social Research and Data InnovationUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Geography, Environment and SocietyUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Geography, Environmental Sciences, and Marine Resource ManagementOregon State UniversityCorvallisUSA
  4. 4.Center for International Earth Science Information Network (CIESIN)Columbia UniversityNew YorkUSA
  5. 5.European Space Agency (ESA) and World Bank WashingtonUSA
  6. 6.Cultural Site Research and ManagementBaltimoreUSA
  7. 7.Geoinformatics and Earth Observation LaboratoryDepartment of Geography and Institute for CyberScience The Pennsylvania State UniversityUniversity ParkUSA
  8. 8.Department of GeographyGeorge Washington UniversityWashingtonUSA
  9. 9.Department of Geography and GeosciencesUniversity of LouisvilleLouisvilleUSA
  10. 10.Department of GeographyUniversity of NamurNamurBelgium
  11. 11.Center for Systems Integration and SustainabilityMichigan State UniversityEast LansingUSA
  12. 12.WorldPop, School of Geography and Environmental ScienceUniversity of SouthamptonSouthamptonUK
  13. 13.The Earth InstituteColumbia UniversityNew YorkUSA

Personalised recommendations