Population and Environment

, Volume 37, Issue 1, pp 44–62 | Cite as

Sea-level rise and sub-county population projections in coastal Georgia

  • Mathew E. HauerEmail author
  • Jason M. Evans
  • Clark R. Alexander
Original Paper


It is increasingly apparent that stressors associated with anthropocentric climate change are likely to have dramatic effects on future human settlement patterns. Although sea-level rise is one of the best understood implications of climate change, geographically precise estimation of potential population displacement due to tidewater inundation has proven remarkably problematic. At least within the USA, these problems partially stem from methodological limitations of population projection methodology at sub-county scales. Using a case study of coastal Georgia, USA, this paper develops and demonstrates a new housing unit-based population projection method that is applied at the sub-county scale of Census Block Groups. These projections are then overlaid with spatiotemporally explicit assessments of future sea-level rise inundation provided through the Sea Level Affecting Marsh Model (SLAMM). We find that between 62,000 and 159,000 people are at risk of between 1 and 2 m of sea-level rise by 2100 in coastal Georgia.


Sea-level rise Sub-county Population projections Hammer method Housing unit method Climate change 



We would like to thank Georgia SeaGrant and the Georgia Coastal Management Program for providing funding for this project. We would also like to thank the nine reviewers for their plenitude of insightful and helpful comments.


  1. Abraham, B., & Ledolter, J. (2009). Statistical methods for forecasting, Vol. 234. New York: Wiley.Google Scholar
  2. Adger, W. N., Huq, S., Brown, K., Conway, D., & Hulme, M. (2003). Adaptation to climate change in the developing world. Progress in Development Studies, 3(3), 179–195.CrossRefGoogle Scholar
  3. Baker, J., Alcantara, A., Ruan, X. M., Watkins, K., & Vasan, S. (2013). A comparative evaluation of error and bias in census tract-level age/sex-specific population estimates: Component I (Net-Migration) vs component III (Hamilton-Perry). Population Research and Policy Review, 32(6), 919–942. doi: 10.1007/s11113-013-9295-4.CrossRefGoogle Scholar
  4. Byerly, E. (1990). State and local agencies preparing population and housing estimates. Current Population Reports, Series P-25-1063.Google Scholar
  5. Cai, Q. (2007). New techniques in small area population estimates by demographic characteristics. Population Research and Policy Review, 26(2), 203–218. doi: 10.1007/s11113-007-9028-7.CrossRefGoogle Scholar
  6. Cai, Q., & Spar, M. (2008). An evaluation of housing unit-based estimates in Virginia. Charlottesville: Weldon Cooper Center.Google Scholar
  7. Clough, J., Park, R., & Fuller, R. (2010). SLAMM 6 beta Technical Documentation (Release 6.0.1 beta). Warren Pinnacle Consulting Inc. Retrieved from
  8. Cohen, J. E. (1986). Population forecasts and confidence intervals for Sweden: A comparison of model-based and empirical approaches. Demography, 23(1), 105–126.CrossRefGoogle Scholar
  9. Concannon, T., Hussain, M., Hudgens, D., & Titus, J. (2010). Georgia. In J. Titus, D. Trescott & D. Hudgens (Eds.), The likelihood of shore protection along the Atlantic Coast of the United States. Volume 2: New England and the Southeast. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  10. Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., & Machmuller, M. (2009). Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 7, 73–78.CrossRefGoogle Scholar
  11. Cromley, R. G., Ebenstein, A. Y., & Hanink, D. M. (2009). Estimating components of population change from census data for incongruent spatial/temporal units and attributes. Journal of Spatial Science, 54(2), 89–99. doi: 10.1080/14498596.2009.9635180.
  12. Curtis, K., & Schneider, A. (2011). Understanding the demographic implications of climate change: estimates of localized population predictions under future scenarios of sea-level rise. Population and Environment, 33, 28–54.CrossRefGoogle Scholar
  13. Cutter, S. L., Emrich, C. T., Morath, D. P., & Dunning, C. M. (2013). Integrating social vulnerability into federal flood risk management planning. Journal of Flood Risk Management, 6(4), 332–344. doi: 10.1111/Jfr3.12018.CrossRefGoogle Scholar
  14. Deming, W. E., & Stephan, F. F. (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. The Annals of Mathematical Statistics, 11(4), 427–444. doi: 10.2307/2235722.CrossRefGoogle Scholar
  15. Gesch, D. (2009). Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. Journal of Coastal Research, Special Issue, 53, 49–58.CrossRefGoogle Scholar
  16. Gifford, R. (2011). The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation. American Psychologist, 66(4), 290.CrossRefGoogle Scholar
  17. Glover, P., & Prideaux, B. (2008). Using population projections to identify aspects of future tourism demand. Advances in Hospitality and Leisure, 4(4), 185–209. doi: 10.1016/S1745-3542(08)00009-X.CrossRefGoogle Scholar
  18. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2010). Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynamics, 34(4), 461–472.CrossRefGoogle Scholar
  19. Grübler, A., O’Neill, B., Riahi, K., Chirkov, V., Goujon, A., Kolp, P., & Slentoe, E. (2007). Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technological Forecasting and Social Change, 74(7), 980–1029.CrossRefGoogle Scholar
  20. Hammer, R. B., Stewart, S. I., Hawbaker, T. J., & Radeloff, V. C. (2009). Housing growth, forests, and public lands in Northern Wisconsin from 1940 to 2000. Journal of Environmental Management, 90(8), 2690–2698.CrossRefGoogle Scholar
  21. Hammer, R. B., Stewart, S. I., Winkler, R. L., Radeloff, V. C., & Voss, P. R. (2004). Characterizing dynamic spatial and temporal residential density patterns from 1940–1990 across the North Central United States. Landscape and Urban Planning, 69(2), 183–199.CrossRefGoogle Scholar
  22. Hansen, H. S. (2010). Small-area population projections—A key element in knowledge based e-governance. Electronic Government and the Information Systems Perspective, 6267, 32–46.CrossRefGoogle Scholar
  23. Hassani-Mahmooei, B., & Parris, B. W. (2012). Climate change and internal migration patterns in Bangladesh: An agent-based model. Environment and Development Economics, 17, 763–780. doi: 10.1017/S1355770x12000290.CrossRefGoogle Scholar
  24. Hauer, M. (2013). A 3D spatio-temporal geovisualization of subcounty estimates of historic housing density in Metro Atlanta, 1940–2009. Spatial Demography, 1(2), 146–161.Google Scholar
  25. Hauer, M., Baker, J., & Brown, W. (2013). Indirect estimates of total fertility rate using child woman/ratio: A comparison with the Bogue–Palmore Method. PLoS ONE. doi: 10.1371/journal.pone.0067226.Google Scholar
  26. Herod, A. (2011). Scale (key ideas in geography). New York: Routledge.Google Scholar
  27. Hugo, G. (2011). Future demographic change and its interactions with migration and climate change. Global Environmental Change, 215, 521–533.Google Scholar
  28. Hunt, A., & Watkiss, P. (2011). Climate change impacts and adaptation in cities: A review of the literature. Climatic Change, 104(1), 13–49. doi: 10.1007/s10584-010-9975-6.CrossRefGoogle Scholar
  29. Hyndman, R. J., & Athanasopoulos, G. (2014). Forecasting: Principles and practice. On Demand Publishing, LLC-Create Space.Google Scholar
  30. IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, & L.L. White (Eds.), Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  31. Jenouvrier, S., Caswell, H., Barbraud, C., Holland, M., Stroeve, J., & Weimerskirch, H. (2009). Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1844–1847. doi: 10.1073/pnas.0806638106.CrossRefGoogle Scholar
  32. Jevrejeva, S., Moore, J. C., & Grinsted, A. (2012). Sea level projections to AD2500 with a new generation of climate change scenarios. Global and Planetary Change, 80, 14–20.CrossRefGoogle Scholar
  33. Jones-Jackson, P. (2011). When roots die: Endangered traditions on the Sea Islands. University of Georgia Press.Google Scholar
  34. Kanaroglou, P. S., Maoh, H. F., Newbold, B., Scott, D. M., & Paez, A. (2009). A demographic model for small area population projections: An application to the Census Metropolitan Area of Hamilton in Ontario. Canada. Environment and Planning A, 41(4), 964–979. doi: 10.1068/A40172.CrossRefGoogle Scholar
  35. Lam, N. S. N., Arenas, H., Li, Z., & Liu, K. B. (2009). An estimate of population impacted by climate change along the U.S. Coast. Journal of Coastal Research, 1522–1526. doi: 10.2307/25738044.
  36. Levinson, N. (1946). The wiener rms (Root Mean Square) error criterion in filter design and prediction. Journal of Mathematics and Physics, 25(4), 261–278.Google Scholar
  37. Lutsey, N., & Sperling, D. (2008). America’s bottom-up climate change mitigation policy. Energy Policy, 36, 673–685.CrossRefGoogle Scholar
  38. Lutz, W. (2013). Demographic metabolism: A predictive theory of socioeconomic change. Population and Development Review, 38, 283–301. doi: 10.1111/j.1728-4457.2013.00564.x.CrossRefGoogle Scholar
  39. Lutz, W., Goujon, A., Smir, K., & Sanderson, W. (2007). Vienna yearbook of population research. Vienna: Vienna Institute of Demography.Google Scholar
  40. Lutz, W., & Samir, K. C. (2010). Dimensions of global population projections: What do we know about future population trends and structures? Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1554), 2779–2791. doi: 10.1098/rstb.2010.0133.CrossRefGoogle Scholar
  41. Lutz, W., Sanderson, W. C., & Scherbov, S. (1998). Expert-based probabilistic population projections. Population and Development Review, 24, 139–155. doi: 10.2307/2808054.
  42. Martin, D., Dorling, D., & Mitchell, R. (2002). Linking censuses through time: Problems and solutions. Area, 34(1), 82–91. doi: 10.1111/1475-4762.00059.CrossRefGoogle Scholar
  43. McLeman, R. A. (2013). Climate and human migration: Past experiences, future challenges. Cambridge: Cambridge University Press.Google Scholar
  44. McLeman, R. A., & Hunter, L. M. (2010). Migration in the context of vulnerability and adaptation to climate change: Insights from analogues. Wiley Interdisciplinary Reviews: Climate Change, 1(3), 450–461.Google Scholar
  45. Murdock, S. H., Hamm, R. R., Voss, P. R., Fannin, D., & Pecotte, B. (1991). Evaluating small-area population projections. Journal of the American Planning Association, 57(4), 432–443. doi: 10.1080/01944369108975518.CrossRefGoogle Scholar
  46. Murdukhayeva, A., August, P., Bradley, M., LaBash, C., & Shaw, N. (2013). Assessment of inundation risk from sea level rise and storm surge in northeastern coastal national parks. Journal of Coastal Research, 29(6a), 1–16.CrossRefGoogle Scholar
  47. Newbold, B. (2010). Population geography. Lanham, MD: Rowman and Littlefield Publishers Inc.Google Scholar
  48. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones (June, pg 1517, 2007). Science, 329(5992), 628.Google Scholar
  49. Norman, P., Rees, P., & Boyle, P. (2003). Achieving data compatibility over space and time: Creating consistent geographical zones. International Journal of Population Geography, 9(5), 365–386. doi: 10.1002/ijpg.294.CrossRefGoogle Scholar
  50. Odum, W. E. (1988). Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics, 19, 147–176. doi: 10.2307/2097151.CrossRefGoogle Scholar
  51. Parkinson, R. W., & McCue, T. (2011). Assessing municipal vulnerability to predicted sea level rise: City of Satellite Beach, Florida. Climatic Change, 107(1–2), 203–223.CrossRefGoogle Scholar
  52. Parris, A. B., P., Burkett, V., Cayan, D., Culver, M., Hall, J., Horton, R., et al. (2012). Global sea level rise scenarios for the US National Climate Assessment: NOAA Tech Memo OAR CPO-1.
  53. Perkins, D. (2014). Population, projections and rural heath. Australian Journal of Rural Health, 22(1), 1. doi: 10.1111/Ajr.12095.CrossRefGoogle Scholar
  54. Plyer, A., Bonaguro, J., & Hodges, K. (2010). Using administrative data to estimate population displacement and resettlement following a catastrophic US disaster. Population and Environment, 31, 150–175.CrossRefGoogle Scholar
  55. Pollitzer, W. S. (2005). The Gullah people and their African heritage. Georgia: University of Georgia Press.Google Scholar
  56. Rahmstorf, S., Foster, G., & Cazenave, A. (2012). Comparing climate projections to observations up to 2011. Environmental Research Letters, 7(4), 044035.CrossRefGoogle Scholar
  57. Rowley, R., Kostelnick, J., Braaten, D., Li, X., & Meisel, J. (2007). Risk of rising sea level to population and land area. Eos, Transactions American Geophysical Union, 88, 105.CrossRefGoogle Scholar
  58. Shepard, C. C., Agostini, V. N., Gilmer, B., Allen, T., Stone, J., Brooks, W., et al. (2012). Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Natural Hazards, 60(2), 727–745. doi: 10.1007/s11069-011-0046-8.
  59. Siegel, J. (2002). Applied demography: Applications to business, government, law and public policy. London: Academic Press.Google Scholar
  60. Siegel, J., & Swanson, D. A. (2008). Methods and materials of demography, Vol. 2nd ed. UK: Emerald Group Publishing.Google Scholar
  61. Smith, S. K. (1986). A review and evaluation of the housing unit method of population estimation. Journal of the American Statistical Association, 81, 287–296.CrossRefGoogle Scholar
  62. Smith, S. K., & Cody, S. (1994). Evaluating the housing unit method: A case study of 1990 population estimates in Florida. Journal of the American Planning Association, 60(2), 209–221. doi: 10.1080/01944369408975574.CrossRefGoogle Scholar
  63. Smith, S. K., Nogle, J., & Cody, S. (2002). A regression approach to estimating the average number of persons per household. Demography, 39(4), 697–712.CrossRefGoogle Scholar
  64. Smith, S. K., Tayman, J., & Swanson, D. A. (2001). State and local population projections: Methodology and analysis. New York: Plenum.Google Scholar
  65. Stoto, M. A. (1983). The accuracy of population projections. Journal of the American Statistical Association, 78(381), 13–20.CrossRefGoogle Scholar
  66. Sullivan, M. (2007). Savannah and Charleston. New York: Random House LLC.Google Scholar
  67. Swanson, D. A. (2006). Two plus two should never equal three: Getting intercensal population estimates right the first time. In Paper presented at the Statement before the subcommittee on Federalism and the Census oversight hearing committee on government reform, US House of Representatives, Wednesday, September 6, 2006 Room 2247 Rayburn House Office Building.Google Scholar
  68. Swanson, D. A. (2010). The methods and materials used to generate two key elements of the housing unit method of population estimation: Vacancy rates and persons per household. In Paper presented at the 2010 PAA meeting, Dallas.
  69. Swanson, D. A., & Beck, D. M. (1994). A new short-term county population projection method. Journal of Economic and Social Measurement, 20(1), 25–50.Google Scholar
  70. Swanson, D. A., Schlottman, A., & Schmidt, B. (2010). Forecasting the population of census tracts by age and sex: An example of the Hamilton–Perry method in action. Population Research and Policy Review, 29, 47–63.CrossRefGoogle Scholar
  71. Swanson, D. A., Siegel, J., & Shryock, H. S. (2004). The methods and materials of demography. Burlington, MA: Elsevier Academic Press.Google Scholar
  72. Swanson, D. A., & Tayman, J. (2012). Extrapolation methods subnational population estimates, Vol. 31, pp. 115–135. Netherlands: Springer.Google Scholar
  73. Swanson, D. A., & Tayman, J. (2013). Measuring uncertainty in population forecasts: A new approach. Joint Eurostat/UNECE Work Session on Demographic Projections organised in cooperation with Istat in Rome, Italy.
  74. Swanson, D. A., & Tayman, J. (2015). On the ratio-correlation regression method of population estimation and its variants. Emerging Techniques in Applied Demography (pp. 93–117). Berlin: Springer.Google Scholar
  75. Swanson, D. A., Tayman, J., & Barr, C. F. (2000). A note on the measurement of accuracy for subnational demographic estimates. Demography, 37(2), 193–201.CrossRefGoogle Scholar
  76. Swanson, D. A., Tayman, J., & Bryan, T. (2011). MAPE-R: A rescaled measure of accuracy for cross-sectional subnational population forecasts. Journal of Population Research, 28(2–3), 225–243.CrossRefGoogle Scholar
  77. Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Human influence on California fire regimes. Ecological Applications, 17(5), 1388–1402.CrossRefGoogle Scholar
  78. Tayman, J., Smith, S., & Lin, J. (2007). Precision, bias, and uncertainty for state population forecasts: An exploratory analysis of time series models. Population Research and Policy Review, 26(3), 347–369. doi: 10.1007/s11113-007-9034-9.CrossRefGoogle Scholar
  79. Tippett, R., Claibourn, M., & Cai, Q. (2013). Population projections by demographic details: A multi-layered approach. In Paper presented at the 2013 PAA meeting, New Orleans.
  80. Titus, J., Hudgens, D., Trescott, D., Craghan, M., Nuckols, W., et al. (2009). State and local government plant for development of most land vulnerable to rising sea level along the US Atlantic Coast. Environmental Research Letters, 4.Google Scholar
  81. United Nations. (2013). The United Nations 2012 population projections. Population and Development Review, 39(3), 551–555. doi: 10.1111/j.1728-4457.2013.00625.x.CrossRefGoogle Scholar
  82. Vermeer, M., & Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences, 106(51), 21527–21532. doi: 10.1073/pnas.0907765106.CrossRefGoogle Scholar
  83. Wilson, T. (2014). New evaluations of simple models for small area population forecasts. Population, Space and Place. doi: 10.1002/psp.1847.Google Scholar
  84. Wilson, E., & Piper, J. (2010). Spatial planning and climate change. London: Routledge.Google Scholar
  85. Wu, S.-Y., Yarnal, B., & Fisher, A. (2002). Vulnerability of coastal communities to sealevel rise: A case study of Cape May county, New Jersey. USA. Climate Research, 22(3), 255–270.CrossRefGoogle Scholar
  86. Zeng, Y., Land, K., Gu, D., & Wang, Z. (2014). Household and living arrangement projections at the small area level. Household and living arrangement projections, Vol. 36, pp. 109–114. Netherlands: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mathew E. Hauer
    • 1
    Email author
  • Jason M. Evans
    • 2
  • Clark R. Alexander
    • 3
  1. 1.Carl Vinson Institute of GovernmentUniversity of GeorgiaAthensUSA
  2. 2.Department of Environmental Science and StudiesStetson UniversityDeLandUSA
  3. 3.Skidaway Institute of OceanographyUniversity of GeorgiaSavannahUSA

Personalised recommendations