Physical Oceanography

, 20:451

Investigation of the oceanic cloudiness according to the data of satellite observations in the spectral range 10.3–11.3 μm

  • N. A. Timofeev
Satellite Oceanography
  • 13 Downloads

The temperature of waters in the upper layer of the ocean and effective cloudiness (cloudiness with simultaneous indication of its amount and optical density) are important characteristics of the natural environments. They determine the greenhouse effects and the energy of the ocean and atmosphere, and regulate climate. The satellite data on these characteristics enable one to reconstruct all components of the radiation, heat, and water budgets in the ocean–atmosphere system and study their intra- and interannual variations. We describe the procedures of evaluation of the effective cloudiness according to the sea-surface temperature and the radiation temperature in the spectral range 10.3–11.3 μm. The development of these investigations is connected with the advances in satellite hydrophysics: the satellite data become more and more accurate, regular, and global.

References

  1. 1.
    K. Ya. Kondrat’ev, World Climate Research Program: State, Prospects, and the Role of Cosmic Means of Surveillance [in Russian], VINITI, Moscow (1982).Google Scholar
  2. 2.
    N. A. Timofeev, “Greenhouse effect in the atmosphere and its influence of the Earth’s climate (satellite data),” Morsk. Gidrofiz. Zh., No. 6, 13–28 (2006).Google Scholar
  3. 3.
    V. A. Golovko, “Global redistribution of the components of Earth’s radiation balance,” Issled. Zemli Kosm., No. 6, 51–62 (2003).Google Scholar
  4. 4.
    N. A. Timofeev and A. V. Yurovskii, Radiation, Heat-, and Water Budgets of the Oceans. Climate and Variability [in Russian], ÉKOSI-Gidrofizika, Sevastopol (2004).Google Scholar
  5. 5.
    N. A. Timofeev and A. V. Yurovskii, “On the climatic satellite monitoring of external heat budgets of the oceans and Black Sea,” Morsk. Gidrofiz. Zh., No. 6, 59–75 (2007).Google Scholar
  6. 6.
    N. A. Timofeev, “Analysis of the algorithms of reconstruction of the sea-surface temperature on the basis of observations from the NOAA/ERS-1 operating satellites,” Issled. Zemli Kosm., No. 3, 35–41 (1992).Google Scholar
  7. 7.
    N. A. Timofeev, “Methods and results of satellite monitoring of the Atlantic Ocean, in: Hydrophysics of the Tropical Atlantic [in Russian], Naukova Dumka, Kiev (1993), pp. 51–74.Google Scholar
  8. 8.
    N. A. Timofeev, Radiation Conditions of the Oceans [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  9. 9.
    W. Fett, Der Atmosphärische Staub, Wissenschaften, Berlin (1958).Google Scholar
  10. 10.
    G. A. Grishin, N. A. Timofeev, E. I. Kalinin, et al., “Satellite monitoring of mediterranean seas in the optical spectral region,” Issled. Zemli Kosm., No. 6, 45–54 (1992).Google Scholar
  11. 11.
    N. A. Timofeev and M. L. Kaba, “Atmospheric processes. Interaction of the ocean with the atmosphere,” in: Tropical Atlantic. The Region of Guinea [in Russian], Naukova Dumka, Kiev (1988), pp. 13–68.Google Scholar
  12. 12.
    I. I. Mororette, P. Y. Deschamps, and Y. Fouquart, “Outgoing long-wave flux from sounders radiances,” Ann. Meteorol., No. 18, 39–41 (1982).Google Scholar
  13. 13.
    N. A. Timofeev, “Relationships between the intensities of radiation outgoing into the space in various parts of the IR-spectrum,” Morsk. Gidrofiz. Zh., No. 1, 41–46 (1988).Google Scholar
  14. 14.
    Yu. G. Andrianov, I. I. Karavaev, Yu. P. Safonov, et al., Infrared Emission of the Earth into the Space [in Russian], Sov. Radio, Moscow (1973).Google Scholar
  15. 15.
    H. L. Kyle, P. E. Ardanuy, and E. I. Hurley, The Nimbus-7 Earth Radiation Budget Data Set, NASA, Washington (1985).Google Scholar
  16. 16.
    Z. M. Makhover, Climatology of the Tropopause [in Russian], Gidrometeoizdat, Leningrad (1983).Google Scholar
  17. 17.
    N. A. Zaitseva and G. N. Kostyanoi, “Meridional variations of the long-wave radiation in the atmosphere over the Pacific Ocean (according to the data of weather ships), Izv. Akad. Nauk SSSR. Fiz. Atmosf. Okean., 2, No. 12, 1235–1252 (1966).Google Scholar
  18. 18.
    N. A. Zaitseva, G. N. Kostyanoi, and V. I. Shlyakhov, “A model of standard radiation atmosphere (long-wave radiation),” Meteorol. Gidrol., No. 12, 24–34 (1973).Google Scholar
  19. 19.
    B. S. John (Ed.), The Winters of the World, Wiley, New York (1979).Google Scholar
  20. 20.
    M. Bottomley, C. K. Folland, J. Hsiung, R. E. Newell, and D. E. Parker, Global Ocean Surface Temperature Atlas, Joint Project of the Meteorological Office and Massachusetts Institute of Technology (1990).Google Scholar
  21. 21.
    N. A. Timofeev and A. V. Yurovskii, “Climatic monitoring of the atmospheric precipitation and radiation over the Black Sea according to the satellite data,” Morsk. Gidrofiz. Zh., No. 1, 68–84 (2009).Google Scholar
  22. 22.
    M. V. Babii, A. E. Bukatov, and S. V. Stanichnyi, Temperature of the Black-Sea Surface According to the Satellite Data for 1986–2002 [in Russian], Marine Hydrophysical Institute, Ukrainian Academy of Science, Sevastopol (2005).Google Scholar
  23. 23.
    P. Pedelaborde, Les Moussons, A. Colin, Paris (1958).Google Scholar
  24. 24.
    G. K. Korotaev and V. N. Eremeev, Introduction to the Operative Oceanography of the Black Sea [in Russian], ÉKOSI-Gidrofizika, Sevastopol (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • N. A. Timofeev
    • 1
  1. 1.Marine Hydrophysical Institute, Ukrainian National Academy of SciencesSevastopolUkraine

Personalised recommendations